Optical thermometry based on level anticrossing in silicon carbide View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09-14

AUTHORS

A. N. Anisimov, D. Simin, V. A. Soltamov, S. P. Lebedev, P. G. Baranov, G. V. Astakhov, V. Dyakonov

ABSTRACT

We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz(1/2) for a detection volume of approximately 10(-6) mm(3). In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center. More... »

PAGES

33301

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep33301

DOI

http://dx.doi.org/10.1038/srep33301

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007761075

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27624819


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anisimov", 
        "givenName": "A. N.", 
        "id": "sg:person.013642305641.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013642305641.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimental Physics VI, Julius-Maximilian University of W\u00fcrzburg, 97074 W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Experimental Physics VI, Julius-Maximilian University of W\u00fcrzburg, 97074 W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simin", 
        "givenName": "D.", 
        "id": "sg:person.012701327771.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701327771.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soltamov", 
        "givenName": "V. A.", 
        "id": "sg:person.0656333213.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656333213.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35915.3b", 
          "name": [
            "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia", 
            "St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebedev", 
        "givenName": "S. P.", 
        "id": "sg:person.012160272645.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160272645.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baranov", 
        "givenName": "P. G.", 
        "id": "sg:person.0726165524.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726165524.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimental Physics VI, Julius-Maximilian University of W\u00fcrzburg, 97074 W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Experimental Physics VI, Julius-Maximilian University of W\u00fcrzburg, 97074 W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astakhov", 
        "givenName": "G. V.", 
        "id": "sg:person.01314740634.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314740634.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bavarian Center for Applied Energy Research (ZAE Bayern), 97074 W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.432437.5", 
          "name": [
            "Experimental Physics VI, Julius-Maximilian University of W\u00fcrzburg, 97074 W\u00fcrzburg, Germany", 
            "Bavarian Center for Applied Energy Research (ZAE Bayern), 97074 W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dyakonov", 
        "givenName": "V.", 
        "id": "sg:person.01347216033.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347216033.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep01637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026187778", 
          "https://doi.org/10.1038/srep01637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023827788", 
          "https://doi.org/10.1038/nmat4145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003757455", 
          "https://doi.org/10.1038/ncomms8783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036945169", 
          "https://doi.org/10.1038/ncomms9577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029234916", 
          "https://doi.org/10.1038/nature12373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015120234", 
          "https://doi.org/10.1038/ncomms2854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004355795", 
          "https://doi.org/10.1038/srep05303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049863555", 
          "https://doi.org/10.1038/ncomms8578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035575992", 
          "https://doi.org/10.1038/nphys141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008278740", 
          "https://doi.org/10.1038/nphys2826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364012080024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007518683", 
          "https://doi.org/10.1134/s0021364012080024"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09-14", 
    "datePublishedReg": "2016-09-14", 
    "description": "We report a giant thermal shift of 2.1\u2009MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100\u2009mK/Hz(1/2) for a detection volume of approximately 10(-6)\u2009mm(3). In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep33301", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6745491", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5330960", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "zero-field splitting", 
      "level anticrossing", 
      "ground state", 
      "silicon-vacancy centers", 
      "MHz/K", 
      "vacancy centers", 
      "excited states", 
      "optical thermometry", 
      "magnetic field", 
      "detection volume", 
      "photoluminescence intensity", 
      "thermometry technique", 
      "anticrossing", 
      "splitting", 
      "radiofrequency fields", 
      "silicon carbide", 
      "thermal shift", 
      "indirect observations", 
      "temperature sensitivity", 
      "relative variation", 
      "temperature sensor", 
      "ancilla", 
      "field", 
      "state", 
      "magnetic resonance", 
      "resonance", 
      "shift", 
      "thermometry", 
      "temperature shift", 
      "intensity", 
      "vicinity", 
      "same center", 
      "carbide", 
      "properties", 
      "small temperature difference", 
      "temperature difference", 
      "sensors", 
      "center", 
      "technique", 
      "applications", 
      "sensitivity", 
      "variation", 
      "effect", 
      "mK/", 
      "contrast", 
      "volume", 
      "differences", 
      "observations", 
      "giant thermal shift", 
      "optical thermometry technique", 
      "detectable temperature shift"
    ], 
    "name": "Optical thermometry based on level anticrossing in silicon carbide", 
    "pagination": "33301", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007761075"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep33301"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27624819"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep33301", 
      "https://app.dimensions.ai/details/publication/pub.1007761075"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_707.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep33301"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep33301'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep33301'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep33301'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep33301'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      22 PREDICATES      88 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep33301 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nbc04718931154fb2abc6982e83ec38f0
4 schema:citation sg:pub.10.1038/nature12373
5 sg:pub.10.1038/ncomms2854
6 sg:pub.10.1038/ncomms8578
7 sg:pub.10.1038/ncomms8783
8 sg:pub.10.1038/ncomms9577
9 sg:pub.10.1038/nmat4145
10 sg:pub.10.1038/nphys141
11 sg:pub.10.1038/nphys2826
12 sg:pub.10.1038/srep01637
13 sg:pub.10.1038/srep05303
14 sg:pub.10.1134/s0021364012080024
15 schema:datePublished 2016-09-14
16 schema:datePublishedReg 2016-09-14
17 schema:description We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz(1/2) for a detection volume of approximately 10(-6) mm(3). In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N381b24ddfb974af9911277fdbf258b9b
22 N4b388a4484c044e48160063fe416b222
23 sg:journal.1045337
24 schema:keywords MHz/K
25 ancilla
26 anticrossing
27 applications
28 carbide
29 center
30 contrast
31 detectable temperature shift
32 detection volume
33 differences
34 effect
35 excited states
36 field
37 giant thermal shift
38 ground state
39 indirect observations
40 intensity
41 level anticrossing
42 mK/
43 magnetic field
44 magnetic resonance
45 observations
46 optical thermometry
47 optical thermometry technique
48 photoluminescence intensity
49 properties
50 radiofrequency fields
51 relative variation
52 resonance
53 same center
54 sensitivity
55 sensors
56 shift
57 silicon carbide
58 silicon-vacancy centers
59 small temperature difference
60 splitting
61 state
62 technique
63 temperature difference
64 temperature sensitivity
65 temperature sensor
66 temperature shift
67 thermal shift
68 thermometry
69 thermometry technique
70 vacancy centers
71 variation
72 vicinity
73 volume
74 zero-field splitting
75 schema:name Optical thermometry based on level anticrossing in silicon carbide
76 schema:pagination 33301
77 schema:productId N4df6972da8a245aa803aa2a22ab4ee47
78 N98c71416d6724e1d8c6cd237c9ef34ac
79 Na5a34c5603964992a398f82c33380847
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007761075
81 https://doi.org/10.1038/srep33301
82 schema:sdDatePublished 2021-11-01T18:27
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Nacfeebead8294bea96e8fe713264302f
85 schema:url https://doi.org/10.1038/srep33301
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N19fca7eb844743a985adee395cb8d535 rdf:first sg:person.012160272645.18
90 rdf:rest Nc7ef1a0317534d0dbb7a0396bb7fc62d
91 N381b24ddfb974af9911277fdbf258b9b schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 N456c71aa9f704e70898789bfcbffb8f8 rdf:first sg:person.01314740634.92
94 rdf:rest Nd452cbd0b82747bdafa631f2cf76df36
95 N4b388a4484c044e48160063fe416b222 schema:volumeNumber 6
96 rdf:type schema:PublicationVolume
97 N4df6972da8a245aa803aa2a22ab4ee47 schema:name dimensions_id
98 schema:value pub.1007761075
99 rdf:type schema:PropertyValue
100 N50f1f06ba52b4f8a8ab5f662bf4aceab rdf:first sg:person.0656333213.36
101 rdf:rest N19fca7eb844743a985adee395cb8d535
102 N75b97b252d904ec486c2493406752f3a rdf:first sg:person.012701327771.47
103 rdf:rest N50f1f06ba52b4f8a8ab5f662bf4aceab
104 N98c71416d6724e1d8c6cd237c9ef34ac schema:name doi
105 schema:value 10.1038/srep33301
106 rdf:type schema:PropertyValue
107 Na5a34c5603964992a398f82c33380847 schema:name pubmed_id
108 schema:value 27624819
109 rdf:type schema:PropertyValue
110 Nacfeebead8294bea96e8fe713264302f schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Nbc04718931154fb2abc6982e83ec38f0 rdf:first sg:person.013642305641.85
113 rdf:rest N75b97b252d904ec486c2493406752f3a
114 Nc7ef1a0317534d0dbb7a0396bb7fc62d rdf:first sg:person.0726165524.63
115 rdf:rest N456c71aa9f704e70898789bfcbffb8f8
116 Nd452cbd0b82747bdafa631f2cf76df36 rdf:first sg:person.01347216033.69
117 rdf:rest rdf:nil
118 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
119 schema:name Physical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
122 schema:name Other Physical Sciences
123 rdf:type schema:DefinedTerm
124 sg:grant.5330960 http://pending.schema.org/fundedItem sg:pub.10.1038/srep33301
125 rdf:type schema:MonetaryGrant
126 sg:grant.6745491 http://pending.schema.org/fundedItem sg:pub.10.1038/srep33301
127 rdf:type schema:MonetaryGrant
128 sg:journal.1045337 schema:issn 2045-2322
129 schema:name Scientific Reports
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.012160272645.18 schema:affiliation grid-institutes:grid.35915.3b
133 schema:familyName Lebedev
134 schema:givenName S. P.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160272645.18
136 rdf:type schema:Person
137 sg:person.012701327771.47 schema:affiliation grid-institutes:grid.8379.5
138 schema:familyName Simin
139 schema:givenName D.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701327771.47
141 rdf:type schema:Person
142 sg:person.01314740634.92 schema:affiliation grid-institutes:grid.8379.5
143 schema:familyName Astakhov
144 schema:givenName G. V.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314740634.92
146 rdf:type schema:Person
147 sg:person.01347216033.69 schema:affiliation grid-institutes:grid.432437.5
148 schema:familyName Dyakonov
149 schema:givenName V.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347216033.69
151 rdf:type schema:Person
152 sg:person.013642305641.85 schema:affiliation grid-institutes:grid.423485.c
153 schema:familyName Anisimov
154 schema:givenName A. N.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013642305641.85
156 rdf:type schema:Person
157 sg:person.0656333213.36 schema:affiliation grid-institutes:grid.423485.c
158 schema:familyName Soltamov
159 schema:givenName V. A.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656333213.36
161 rdf:type schema:Person
162 sg:person.0726165524.63 schema:affiliation grid-institutes:grid.423485.c
163 schema:familyName Baranov
164 schema:givenName P. G.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726165524.63
166 rdf:type schema:Person
167 sg:pub.10.1038/nature12373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029234916
168 https://doi.org/10.1038/nature12373
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/ncomms2854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015120234
171 https://doi.org/10.1038/ncomms2854
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/ncomms8578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049863555
174 https://doi.org/10.1038/ncomms8578
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ncomms8783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003757455
177 https://doi.org/10.1038/ncomms8783
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ncomms9577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036945169
180 https://doi.org/10.1038/ncomms9577
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nmat4145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023827788
183 https://doi.org/10.1038/nmat4145
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nphys141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035575992
186 https://doi.org/10.1038/nphys141
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nphys2826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008278740
189 https://doi.org/10.1038/nphys2826
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/srep01637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026187778
192 https://doi.org/10.1038/srep01637
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/srep05303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004355795
195 https://doi.org/10.1038/srep05303
196 rdf:type schema:CreativeWork
197 sg:pub.10.1134/s0021364012080024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007518683
198 https://doi.org/10.1134/s0021364012080024
199 rdf:type schema:CreativeWork
200 grid-institutes:grid.35915.3b schema:alternateName St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101, St. Petersburg, Russia
201 schema:name Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia
202 St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101, St. Petersburg, Russia
203 rdf:type schema:Organization
204 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia
205 schema:name Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia
206 rdf:type schema:Organization
207 grid-institutes:grid.432437.5 schema:alternateName Bavarian Center for Applied Energy Research (ZAE Bayern), 97074 Würzburg, Germany
208 schema:name Bavarian Center for Applied Energy Research (ZAE Bayern), 97074 Würzburg, Germany
209 Experimental Physics VI, Julius-Maximilian University of Würzburg, 97074 Würzburg, Germany
210 rdf:type schema:Organization
211 grid-institutes:grid.8379.5 schema:alternateName Experimental Physics VI, Julius-Maximilian University of Würzburg, 97074 Würzburg, Germany
212 schema:name Experimental Physics VI, Julius-Maximilian University of Würzburg, 97074 Würzburg, Germany
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...