Optical thermometry based on level anticrossing in silicon carbide View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09-14

AUTHORS

A. N. Anisimov, D. Simin, V. A. Soltamov, S. P. Lebedev, P. G. Baranov, G. V. Astakhov, V. Dyakonov

ABSTRACT

We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz(1/2) for a detection volume of approximately 10(-6) mm(3). In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center. More... »

PAGES

33301

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep33301

DOI

http://dx.doi.org/10.1038/srep33301

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007761075

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27624819


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anisimov", 
        "givenName": "A. N.", 
        "id": "sg:person.013642305641.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013642305641.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimental Physics VI, Julius-Maximilian University of W\u00fcrzburg, 97074 W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Experimental Physics VI, Julius-Maximilian University of W\u00fcrzburg, 97074 W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simin", 
        "givenName": "D.", 
        "id": "sg:person.012701327771.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701327771.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soltamov", 
        "givenName": "V. A.", 
        "id": "sg:person.0656333213.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656333213.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35915.3b", 
          "name": [
            "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia", 
            "St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebedev", 
        "givenName": "S. P.", 
        "id": "sg:person.012160272645.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160272645.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baranov", 
        "givenName": "P. G.", 
        "id": "sg:person.0726165524.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726165524.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimental Physics VI, Julius-Maximilian University of W\u00fcrzburg, 97074 W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Experimental Physics VI, Julius-Maximilian University of W\u00fcrzburg, 97074 W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astakhov", 
        "givenName": "G. V.", 
        "id": "sg:person.01314740634.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314740634.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bavarian Center for Applied Energy Research (ZAE Bayern), 97074 W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.432437.5", 
          "name": [
            "Experimental Physics VI, Julius-Maximilian University of W\u00fcrzburg, 97074 W\u00fcrzburg, Germany", 
            "Bavarian Center for Applied Energy Research (ZAE Bayern), 97074 W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dyakonov", 
        "givenName": "V.", 
        "id": "sg:person.01347216033.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347216033.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms8783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003757455", 
          "https://doi.org/10.1038/ncomms8783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008278740", 
          "https://doi.org/10.1038/nphys2826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036945169", 
          "https://doi.org/10.1038/ncomms9577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015120234", 
          "https://doi.org/10.1038/ncomms2854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049863555", 
          "https://doi.org/10.1038/ncomms8578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364012080024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007518683", 
          "https://doi.org/10.1134/s0021364012080024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023827788", 
          "https://doi.org/10.1038/nmat4145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026187778", 
          "https://doi.org/10.1038/srep01637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029234916", 
          "https://doi.org/10.1038/nature12373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004355795", 
          "https://doi.org/10.1038/srep05303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035575992", 
          "https://doi.org/10.1038/nphys141"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09-14", 
    "datePublishedReg": "2016-09-14", 
    "description": "We report a giant thermal shift of 2.1\u2009MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100\u2009mK/Hz(1/2) for a detection volume of approximately 10(-6)\u2009mm(3). In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep33301", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6745491", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5330960", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "zero-field splitting", 
      "level anticrossing", 
      "ground state", 
      "silicon-vacancy centers", 
      "MHz/K", 
      "vacancy centers", 
      "excited states", 
      "optical thermometry", 
      "magnetic field", 
      "detection volume", 
      "photoluminescence intensity", 
      "thermometry technique", 
      "anticrossing", 
      "splitting", 
      "radiofrequency fields", 
      "silicon carbide", 
      "thermal shift", 
      "indirect observations", 
      "temperature sensitivity", 
      "relative variation", 
      "temperature sensor", 
      "ancilla", 
      "field", 
      "state", 
      "magnetic resonance", 
      "resonance", 
      "shift", 
      "thermometry", 
      "temperature shift", 
      "intensity", 
      "vicinity", 
      "same center", 
      "carbide", 
      "properties", 
      "small temperature difference", 
      "temperature difference", 
      "sensors", 
      "center", 
      "technique", 
      "applications", 
      "sensitivity", 
      "variation", 
      "effect", 
      "mK/", 
      "contrast", 
      "volume", 
      "differences", 
      "observations", 
      "giant thermal shift", 
      "optical thermometry technique", 
      "detectable temperature shift"
    ], 
    "name": "Optical thermometry based on level anticrossing in silicon carbide", 
    "pagination": "33301", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007761075"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep33301"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27624819"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep33301", 
      "https://app.dimensions.ai/details/publication/pub.1007761075"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_692.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep33301"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep33301'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep33301'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep33301'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep33301'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      22 PREDICATES      88 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep33301 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nced34e8481a14beea67a6de82b5348d3
4 schema:citation sg:pub.10.1038/nature12373
5 sg:pub.10.1038/ncomms2854
6 sg:pub.10.1038/ncomms8578
7 sg:pub.10.1038/ncomms8783
8 sg:pub.10.1038/ncomms9577
9 sg:pub.10.1038/nmat4145
10 sg:pub.10.1038/nphys141
11 sg:pub.10.1038/nphys2826
12 sg:pub.10.1038/srep01637
13 sg:pub.10.1038/srep05303
14 sg:pub.10.1134/s0021364012080024
15 schema:datePublished 2016-09-14
16 schema:datePublishedReg 2016-09-14
17 schema:description We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz(1/2) for a detection volume of approximately 10(-6) mm(3). In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N61191666ff004674986471e8f1831e3c
22 Nddf0d8e57f7f47f996f505fcefcbde88
23 sg:journal.1045337
24 schema:keywords MHz/K
25 ancilla
26 anticrossing
27 applications
28 carbide
29 center
30 contrast
31 detectable temperature shift
32 detection volume
33 differences
34 effect
35 excited states
36 field
37 giant thermal shift
38 ground state
39 indirect observations
40 intensity
41 level anticrossing
42 mK/
43 magnetic field
44 magnetic resonance
45 observations
46 optical thermometry
47 optical thermometry technique
48 photoluminescence intensity
49 properties
50 radiofrequency fields
51 relative variation
52 resonance
53 same center
54 sensitivity
55 sensors
56 shift
57 silicon carbide
58 silicon-vacancy centers
59 small temperature difference
60 splitting
61 state
62 technique
63 temperature difference
64 temperature sensitivity
65 temperature sensor
66 temperature shift
67 thermal shift
68 thermometry
69 thermometry technique
70 vacancy centers
71 variation
72 vicinity
73 volume
74 zero-field splitting
75 schema:name Optical thermometry based on level anticrossing in silicon carbide
76 schema:pagination 33301
77 schema:productId N7473f21d47c047238f250aabc337e359
78 Nab212a232ae147e5aacce17d24153e44
79 Nf209b5f72c8c4717a61067c88cc2d6b8
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007761075
81 https://doi.org/10.1038/srep33301
82 schema:sdDatePublished 2022-01-01T18:38
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Ne806c99357684b0bb03226ee83afd411
85 schema:url https://doi.org/10.1038/srep33301
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N61191666ff004674986471e8f1831e3c schema:volumeNumber 6
90 rdf:type schema:PublicationVolume
91 N7473f21d47c047238f250aabc337e359 schema:name dimensions_id
92 schema:value pub.1007761075
93 rdf:type schema:PropertyValue
94 N8cd64259a2304a0ebc7ace48888a5051 rdf:first sg:person.012701327771.47
95 rdf:rest Ne523c9515dc249ce87775af4bd1c1947
96 Nab212a232ae147e5aacce17d24153e44 schema:name doi
97 schema:value 10.1038/srep33301
98 rdf:type schema:PropertyValue
99 Nac077a80fc9340c480725f23c349b0ff rdf:first sg:person.01347216033.69
100 rdf:rest rdf:nil
101 Nbf14cc77c8d64311b3e79d4411cd370c rdf:first sg:person.01314740634.92
102 rdf:rest Nac077a80fc9340c480725f23c349b0ff
103 Nbf846d3ba75048dbb9ce8fd795e6dc9a rdf:first sg:person.012160272645.18
104 rdf:rest Nd1ba6e8b8d2e45059c959749b067bc45
105 Nced34e8481a14beea67a6de82b5348d3 rdf:first sg:person.013642305641.85
106 rdf:rest N8cd64259a2304a0ebc7ace48888a5051
107 Nd1ba6e8b8d2e45059c959749b067bc45 rdf:first sg:person.0726165524.63
108 rdf:rest Nbf14cc77c8d64311b3e79d4411cd370c
109 Nddf0d8e57f7f47f996f505fcefcbde88 schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 Ne523c9515dc249ce87775af4bd1c1947 rdf:first sg:person.0656333213.36
112 rdf:rest Nbf846d3ba75048dbb9ce8fd795e6dc9a
113 Ne806c99357684b0bb03226ee83afd411 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nf209b5f72c8c4717a61067c88cc2d6b8 schema:name pubmed_id
116 schema:value 27624819
117 rdf:type schema:PropertyValue
118 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
119 schema:name Physical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
122 schema:name Other Physical Sciences
123 rdf:type schema:DefinedTerm
124 sg:grant.5330960 http://pending.schema.org/fundedItem sg:pub.10.1038/srep33301
125 rdf:type schema:MonetaryGrant
126 sg:grant.6745491 http://pending.schema.org/fundedItem sg:pub.10.1038/srep33301
127 rdf:type schema:MonetaryGrant
128 sg:journal.1045337 schema:issn 2045-2322
129 schema:name Scientific Reports
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.012160272645.18 schema:affiliation grid-institutes:grid.35915.3b
133 schema:familyName Lebedev
134 schema:givenName S. P.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160272645.18
136 rdf:type schema:Person
137 sg:person.012701327771.47 schema:affiliation grid-institutes:grid.8379.5
138 schema:familyName Simin
139 schema:givenName D.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701327771.47
141 rdf:type schema:Person
142 sg:person.01314740634.92 schema:affiliation grid-institutes:grid.8379.5
143 schema:familyName Astakhov
144 schema:givenName G. V.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314740634.92
146 rdf:type schema:Person
147 sg:person.01347216033.69 schema:affiliation grid-institutes:grid.432437.5
148 schema:familyName Dyakonov
149 schema:givenName V.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347216033.69
151 rdf:type schema:Person
152 sg:person.013642305641.85 schema:affiliation grid-institutes:grid.423485.c
153 schema:familyName Anisimov
154 schema:givenName A. N.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013642305641.85
156 rdf:type schema:Person
157 sg:person.0656333213.36 schema:affiliation grid-institutes:grid.423485.c
158 schema:familyName Soltamov
159 schema:givenName V. A.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656333213.36
161 rdf:type schema:Person
162 sg:person.0726165524.63 schema:affiliation grid-institutes:grid.423485.c
163 schema:familyName Baranov
164 schema:givenName P. G.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726165524.63
166 rdf:type schema:Person
167 sg:pub.10.1038/nature12373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029234916
168 https://doi.org/10.1038/nature12373
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/ncomms2854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015120234
171 https://doi.org/10.1038/ncomms2854
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/ncomms8578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049863555
174 https://doi.org/10.1038/ncomms8578
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ncomms8783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003757455
177 https://doi.org/10.1038/ncomms8783
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ncomms9577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036945169
180 https://doi.org/10.1038/ncomms9577
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nmat4145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023827788
183 https://doi.org/10.1038/nmat4145
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nphys141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035575992
186 https://doi.org/10.1038/nphys141
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nphys2826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008278740
189 https://doi.org/10.1038/nphys2826
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/srep01637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026187778
192 https://doi.org/10.1038/srep01637
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/srep05303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004355795
195 https://doi.org/10.1038/srep05303
196 rdf:type schema:CreativeWork
197 sg:pub.10.1134/s0021364012080024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007518683
198 https://doi.org/10.1134/s0021364012080024
199 rdf:type schema:CreativeWork
200 grid-institutes:grid.35915.3b schema:alternateName St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101, St. Petersburg, Russia
201 schema:name Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia
202 St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101, St. Petersburg, Russia
203 rdf:type schema:Organization
204 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia
205 schema:name Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia
206 rdf:type schema:Organization
207 grid-institutes:grid.432437.5 schema:alternateName Bavarian Center for Applied Energy Research (ZAE Bayern), 97074 Würzburg, Germany
208 schema:name Bavarian Center for Applied Energy Research (ZAE Bayern), 97074 Würzburg, Germany
209 Experimental Physics VI, Julius-Maximilian University of Würzburg, 97074 Würzburg, Germany
210 rdf:type schema:Organization
211 grid-institutes:grid.8379.5 schema:alternateName Experimental Physics VI, Julius-Maximilian University of Würzburg, 97074 Würzburg, Germany
212 schema:name Experimental Physics VI, Julius-Maximilian University of Würzburg, 97074 Würzburg, Germany
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...