Higher-dimensional performance of port-based teleportation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09-08

AUTHORS

Zhi-Wei Wang, Samuel L. Braunstein

ABSTRACT

Port-based teleportation (PBT) is a variation of regular quantum teleportation that operates without a final unitary correction. However, its behavior for higher-dimensional systems has been hard to calculate explicitly beyond dimension d = 2. Indeed, relying on conventional Hilbert-space representations entails an exponential overhead with increasing dimension. Some general upper and lower bounds for various success measures, such as (entanglement) fidelity, are known, but some become trivial in higher dimensions. Here we construct a graph-theoretic algebra (a subset of Temperley-Lieb algebra) which allows us to explicitly compute the higher-dimensional performance of PBT for so-called "pretty-good measurements" with negligible representational overhead. This graphical algebra allows us to explicitly compute the success probability to distinguish the different outcomes and fidelity for arbitrary dimension d and low number of ports N, obtaining in addition a simple upper bound. The results for low N and arbitrary d show that the entanglement fidelity asymptotically approaches N/d(2) for large d, confirming the performance of one lower bound from the literature. More... »

PAGES

33004

References to SciGraph publications

  • 2015-09-29. Advances in quantum teleportation in NATURE PHOTONICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep33004

    DOI

    http://dx.doi.org/10.1038/srep33004

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011511686

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27605383


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tang Aoqing Honors Program in Science, College of Physics, Jilin University, Changchun, 130012, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "Tang Aoqing Honors Program in Science, College of Physics, Jilin University, Changchun, 130012, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Zhi-Wei", 
            "id": "sg:person.013055741525.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055741525.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Science and York Centre for Quantum Technologies, University of York, York YO10 5GH, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.5685.e", 
              "name": [
                "Computer Science and York Centre for Quantum Technologies, University of York, York YO10 5GH, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Braunstein", 
            "givenName": "Samuel L.", 
            "id": "sg:person.0666766367.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphoton.2015.154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040127709", 
              "https://doi.org/10.1038/nphoton.2015.154"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-09-08", 
        "datePublishedReg": "2016-09-08", 
        "description": "Port-based teleportation (PBT) is a variation of regular quantum teleportation that operates without a final unitary correction. However, its behavior for higher-dimensional systems has been hard to calculate explicitly beyond dimension d\u2009=\u20092. Indeed, relying on conventional Hilbert-space representations entails an exponential overhead with increasing dimension. Some general upper and lower bounds for various success measures, such as (entanglement) fidelity, are known, but some become trivial in higher dimensions. Here we construct a graph-theoretic algebra (a subset of Temperley-Lieb algebra) which allows us to explicitly compute the higher-dimensional performance of PBT for so-called \"pretty-good measurements\" with negligible representational overhead. This graphical algebra allows us to explicitly compute the success probability to distinguish the different outcomes and fidelity for arbitrary dimension d and low number of ports N, obtaining in addition a simple upper bound. The results for low N and arbitrary d show that the entanglement fidelity asymptotically approaches N/d(2) for large d, confirming the performance of one lower bound from the literature.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/srep33004", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3956583", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "dimension d", 
          "Hilbert space representation", 
          "port-based teleportation", 
          "high-dimensional systems", 
          "arbitrary dimension d", 
          "unitary corrections", 
          "simple upper", 
          "higher dimensions", 
          "general upper", 
          "lower bounds", 
          "entanglement fidelity", 
          "algebra", 
          "exponential overhead", 
          "success probability", 
          "quantum teleportation", 
          "upper", 
          "teleportation", 
          "bounds", 
          "better measurement", 
          "port n", 
          "dimensions", 
          "fidelity", 
          "probability", 
          "performance", 
          "representation", 
          "overhead", 
          "correction", 
          "system", 
          "number", 
          "measurements", 
          "behavior", 
          "results", 
          "ports", 
          "variation", 
          "show", 
          "low number", 
          "literature", 
          "measures", 
          "addition", 
          "different outcomes", 
          "success measures", 
          "PBT", 
          "outcomes", 
          "regular quantum teleportation", 
          "final unitary correction", 
          "conventional Hilbert-space representations", 
          "graph-theoretic algebra", 
          "higher-dimensional performance", 
          "negligible representational overhead", 
          "representational overhead", 
          "graphical algebra"
        ], 
        "name": "Higher-dimensional performance of port-based teleportation", 
        "pagination": "33004", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011511686"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep33004"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27605383"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep33004", 
          "https://app.dimensions.ai/details/publication/pub.1011511686"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_696.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/srep33004"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep33004'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep33004'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep33004'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep33004'


     

    This table displays all metadata directly associated to this object as RDF triples.

    128 TRIPLES      22 PREDICATES      78 URIs      69 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep33004 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4f7f2752b1934fdc9d5ca3758e91b2c1
    4 schema:citation sg:pub.10.1038/nphoton.2015.154
    5 schema:datePublished 2016-09-08
    6 schema:datePublishedReg 2016-09-08
    7 schema:description Port-based teleportation (PBT) is a variation of regular quantum teleportation that operates without a final unitary correction. However, its behavior for higher-dimensional systems has been hard to calculate explicitly beyond dimension d = 2. Indeed, relying on conventional Hilbert-space representations entails an exponential overhead with increasing dimension. Some general upper and lower bounds for various success measures, such as (entanglement) fidelity, are known, but some become trivial in higher dimensions. Here we construct a graph-theoretic algebra (a subset of Temperley-Lieb algebra) which allows us to explicitly compute the higher-dimensional performance of PBT for so-called "pretty-good measurements" with negligible representational overhead. This graphical algebra allows us to explicitly compute the success probability to distinguish the different outcomes and fidelity for arbitrary dimension d and low number of ports N, obtaining in addition a simple upper bound. The results for low N and arbitrary d show that the entanglement fidelity asymptotically approaches N/d(2) for large d, confirming the performance of one lower bound from the literature.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N5d0132b13e354127a0fe183dde49199d
    12 N81dca7fce89e4506a1583850a6d8fbdb
    13 sg:journal.1045337
    14 schema:keywords Hilbert space representation
    15 PBT
    16 addition
    17 algebra
    18 arbitrary dimension d
    19 behavior
    20 better measurement
    21 bounds
    22 conventional Hilbert-space representations
    23 correction
    24 different outcomes
    25 dimension d
    26 dimensions
    27 entanglement fidelity
    28 exponential overhead
    29 fidelity
    30 final unitary correction
    31 general upper
    32 graph-theoretic algebra
    33 graphical algebra
    34 high-dimensional systems
    35 higher dimensions
    36 higher-dimensional performance
    37 literature
    38 low number
    39 lower bounds
    40 measurements
    41 measures
    42 negligible representational overhead
    43 number
    44 outcomes
    45 overhead
    46 performance
    47 port n
    48 port-based teleportation
    49 ports
    50 probability
    51 quantum teleportation
    52 regular quantum teleportation
    53 representation
    54 representational overhead
    55 results
    56 show
    57 simple upper
    58 success measures
    59 success probability
    60 system
    61 teleportation
    62 unitary corrections
    63 upper
    64 variation
    65 schema:name Higher-dimensional performance of port-based teleportation
    66 schema:pagination 33004
    67 schema:productId N7d53a213ccc54d52afe6a0584bcfd697
    68 Nc33f5b6a06614e4099596ab9b571515a
    69 Ne952009474784d58ad76978f456c257d
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011511686
    71 https://doi.org/10.1038/srep33004
    72 schema:sdDatePublished 2021-12-01T19:36
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher Ndd4acbc5faee458fb2ae6dcb474e37a4
    75 schema:url https://doi.org/10.1038/srep33004
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N4f7f2752b1934fdc9d5ca3758e91b2c1 rdf:first sg:person.013055741525.02
    80 rdf:rest N75a2f597ec474018bf50e2b5bac223f9
    81 N5d0132b13e354127a0fe183dde49199d schema:issueNumber 1
    82 rdf:type schema:PublicationIssue
    83 N75a2f597ec474018bf50e2b5bac223f9 rdf:first sg:person.0666766367.22
    84 rdf:rest rdf:nil
    85 N7d53a213ccc54d52afe6a0584bcfd697 schema:name dimensions_id
    86 schema:value pub.1011511686
    87 rdf:type schema:PropertyValue
    88 N81dca7fce89e4506a1583850a6d8fbdb schema:volumeNumber 6
    89 rdf:type schema:PublicationVolume
    90 Nc33f5b6a06614e4099596ab9b571515a schema:name doi
    91 schema:value 10.1038/srep33004
    92 rdf:type schema:PropertyValue
    93 Ndd4acbc5faee458fb2ae6dcb474e37a4 schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 Ne952009474784d58ad76978f456c257d schema:name pubmed_id
    96 schema:value 27605383
    97 rdf:type schema:PropertyValue
    98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Mathematical Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Pure Mathematics
    103 rdf:type schema:DefinedTerm
    104 sg:grant.3956583 http://pending.schema.org/fundedItem sg:pub.10.1038/srep33004
    105 rdf:type schema:MonetaryGrant
    106 sg:journal.1045337 schema:issn 2045-2322
    107 schema:name Scientific Reports
    108 schema:publisher Springer Nature
    109 rdf:type schema:Periodical
    110 sg:person.013055741525.02 schema:affiliation grid-institutes:grid.64924.3d
    111 schema:familyName Wang
    112 schema:givenName Zhi-Wei
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055741525.02
    114 rdf:type schema:Person
    115 sg:person.0666766367.22 schema:affiliation grid-institutes:grid.5685.e
    116 schema:familyName Braunstein
    117 schema:givenName Samuel L.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22
    119 rdf:type schema:Person
    120 sg:pub.10.1038/nphoton.2015.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040127709
    121 https://doi.org/10.1038/nphoton.2015.154
    122 rdf:type schema:CreativeWork
    123 grid-institutes:grid.5685.e schema:alternateName Computer Science and York Centre for Quantum Technologies, University of York, York YO10 5GH, United Kingdom
    124 schema:name Computer Science and York Centre for Quantum Technologies, University of York, York YO10 5GH, United Kingdom
    125 rdf:type schema:Organization
    126 grid-institutes:grid.64924.3d schema:alternateName Tang Aoqing Honors Program in Science, College of Physics, Jilin University, Changchun, 130012, People’s Republic of China
    127 schema:name Tang Aoqing Honors Program in Science, College of Physics, Jilin University, Changchun, 130012, People’s Republic of China
    128 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...