Numerosity perception after size adaptation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Eckart Zimmermann, Gereon R. Fink

ABSTRACT

While some researchers propose the existence of a special numerosity sense, others challenge this view and argue that numerosity is derived from low-level features as density information. Here, we used size adaptation to manipulate the apparent area size of an object set without changing its physical density. After size adaptation, two probe patches were shown, each of which contained a specific numerosity of dots. Subjects were required to report, which probe patch contained more dots. Numerosity perception was compared between conditions where probe patches were adapted to appear smaller or larger. Size adaptation affected numerosity perception in a logarithmic fashion, increasing with the numerosity in the probe patch. No changes in density perception were found after size adaptation. Data suggest that size and density information play only a minor role in the estimation of low numerosities. In stark contrast, high numerosities strongly depend on size and density information. The data reinforce recent claims of separate mechanism for the perception of low and high numerosities. More... »

PAGES

32810

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep32810

DOI

http://dx.doi.org/10.1038/srep32810

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018316074

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27650296


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Cognitive Neuroscience (INM3), Institute of Neuroscience and Medicine, Research Centre Juelich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zimmermann", 
        "givenName": "Eckart", 
        "id": "sg:person.0701426140.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701426140.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Cologne", 
          "id": "https://www.grid.ac/institutes/grid.411097.a", 
          "name": [
            "Cognitive Neuroscience (INM3), Institute of Neuroscience and Medicine, Research Centre Juelich, Germany", 
            "Department of Neurology, University Hospital Cologne, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fink", 
        "givenName": "Gereon R.", 
        "id": "sg:person.01071124046.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071124046.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1523/jneurosci.1770-13.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002316391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797613501520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008106780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797613501520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008106780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2008.02.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009162095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2004.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011610564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2000.0673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028045351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030935344", 
          "https://doi.org/10.1038/nrn1626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030935344", 
          "https://doi.org/10.1038/nrn1626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/a0026218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031109931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1512408112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031819541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.neuro.051508.135550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033969156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8986.2012.01461.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034271541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2014.1137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043111411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00920482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043162818", 
          "https://doi.org/10.1007/bf00920482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1239052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044115896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1308141110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046049525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1113195108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047482798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/12.6.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048610919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuropsychologia.2015.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050005791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2013.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050127666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(04)00107-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051771113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.2000.83.4.2453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074620750"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "While some researchers propose the existence of a special numerosity sense, others challenge this view and argue that numerosity is derived from low-level features as density information. Here, we used size adaptation to manipulate the apparent area size of an object set without changing its physical density. After size adaptation, two probe patches were shown, each of which contained a specific numerosity of dots. Subjects were required to report, which probe patch contained more dots. Numerosity perception was compared between conditions where probe patches were adapted to appear smaller or larger. Size adaptation affected numerosity perception in a logarithmic fashion, increasing with the numerosity in the probe patch. No changes in density perception were found after size adaptation. Data suggest that size and density information play only a minor role in the estimation of low numerosities. In stark contrast, high numerosities strongly depend on size and density information. The data reinforce recent claims of separate mechanism for the perception of low and high numerosities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep32810", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Numerosity perception after size adaptation", 
    "pagination": "32810", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5744d08332d72d8efdab6bb4a1f465d45f85bc26fd8a7ab35981a1b4c99f43d6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27650296"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep32810"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018316074"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep32810", 
      "https://app.dimensions.ai/details/publication/pub.1018316074"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/srep32810"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep32810'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep32810'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep32810'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep32810'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep32810 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N0df8def0b6744552af9203a237c34057
4 schema:citation sg:pub.10.1007/bf00920482
5 sg:pub.10.1038/nrn1626
6 https://doi.org/10.1006/nimg.2000.0673
7 https://doi.org/10.1016/j.cub.2008.02.052
8 https://doi.org/10.1016/j.neuron.2004.10.014
9 https://doi.org/10.1016/j.neuropsychologia.2015.09.025
10 https://doi.org/10.1016/j.tics.2013.10.002
11 https://doi.org/10.1016/s0896-6273(04)00107-2
12 https://doi.org/10.1037/a0026218
13 https://doi.org/10.1073/pnas.1113195108
14 https://doi.org/10.1073/pnas.1308141110
15 https://doi.org/10.1073/pnas.1512408112
16 https://doi.org/10.1098/rspb.2014.1137
17 https://doi.org/10.1111/j.1469-8986.2012.01461.x
18 https://doi.org/10.1126/science.1239052
19 https://doi.org/10.1146/annurev.neuro.051508.135550
20 https://doi.org/10.1152/jn.2000.83.4.2453
21 https://doi.org/10.1167/12.6.8
22 https://doi.org/10.1177/0956797613501520
23 https://doi.org/10.1523/jneurosci.1770-13.2013
24 schema:datePublished 2016-12
25 schema:datePublishedReg 2016-12-01
26 schema:description While some researchers propose the existence of a special numerosity sense, others challenge this view and argue that numerosity is derived from low-level features as density information. Here, we used size adaptation to manipulate the apparent area size of an object set without changing its physical density. After size adaptation, two probe patches were shown, each of which contained a specific numerosity of dots. Subjects were required to report, which probe patch contained more dots. Numerosity perception was compared between conditions where probe patches were adapted to appear smaller or larger. Size adaptation affected numerosity perception in a logarithmic fashion, increasing with the numerosity in the probe patch. No changes in density perception were found after size adaptation. Data suggest that size and density information play only a minor role in the estimation of low numerosities. In stark contrast, high numerosities strongly depend on size and density information. The data reinforce recent claims of separate mechanism for the perception of low and high numerosities.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N9e26bea541504c1b8408fba634b0b9f0
31 Ne1519e7fe3b8422b80fae8da32897d16
32 sg:journal.1045337
33 schema:name Numerosity perception after size adaptation
34 schema:pagination 32810
35 schema:productId N3acd07b688ed4392a06d02b9f7c2b78e
36 N44a778d0b5b34fc3b4b93f0306705250
37 N485a37e20ba14e36b00eb837e3fb3ed3
38 Nb1a8de633c77405a929087b97dce5917
39 Ned9ad0aa020e4e59b62710e1f686551a
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018316074
41 https://doi.org/10.1038/srep32810
42 schema:sdDatePublished 2019-04-10T14:16
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Naaa416814fd24b35ad68364c8e1b9373
45 schema:url http://www.nature.com/articles/srep32810
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0d44bc8b0a5a40aeb243efe1281304d2 rdf:first sg:person.01071124046.71
50 rdf:rest rdf:nil
51 N0df8def0b6744552af9203a237c34057 rdf:first sg:person.0701426140.01
52 rdf:rest N0d44bc8b0a5a40aeb243efe1281304d2
53 N3acd07b688ed4392a06d02b9f7c2b78e schema:name pubmed_id
54 schema:value 27650296
55 rdf:type schema:PropertyValue
56 N44a778d0b5b34fc3b4b93f0306705250 schema:name doi
57 schema:value 10.1038/srep32810
58 rdf:type schema:PropertyValue
59 N485a37e20ba14e36b00eb837e3fb3ed3 schema:name nlm_unique_id
60 schema:value 101563288
61 rdf:type schema:PropertyValue
62 N9e26bea541504c1b8408fba634b0b9f0 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 Naaa416814fd24b35ad68364c8e1b9373 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nb1a8de633c77405a929087b97dce5917 schema:name readcube_id
67 schema:value 5744d08332d72d8efdab6bb4a1f465d45f85bc26fd8a7ab35981a1b4c99f43d6
68 rdf:type schema:PropertyValue
69 Ne1519e7fe3b8422b80fae8da32897d16 schema:volumeNumber 6
70 rdf:type schema:PublicationVolume
71 Ned9ad0aa020e4e59b62710e1f686551a schema:name dimensions_id
72 schema:value pub.1018316074
73 rdf:type schema:PropertyValue
74 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
75 schema:name Medical and Health Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
78 schema:name Public Health and Health Services
79 rdf:type schema:DefinedTerm
80 sg:journal.1045337 schema:issn 2045-2322
81 schema:name Scientific Reports
82 rdf:type schema:Periodical
83 sg:person.01071124046.71 schema:affiliation https://www.grid.ac/institutes/grid.411097.a
84 schema:familyName Fink
85 schema:givenName Gereon R.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071124046.71
87 rdf:type schema:Person
88 sg:person.0701426140.01 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
89 schema:familyName Zimmermann
90 schema:givenName Eckart
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701426140.01
92 rdf:type schema:Person
93 sg:pub.10.1007/bf00920482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043162818
94 https://doi.org/10.1007/bf00920482
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/nrn1626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030935344
97 https://doi.org/10.1038/nrn1626
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1006/nimg.2000.0673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028045351
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.cub.2008.02.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009162095
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.neuron.2004.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011610564
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.neuropsychologia.2015.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050005791
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.tics.2013.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050127666
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0896-6273(04)00107-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051771113
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1037/a0026218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031109931
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1073/pnas.1113195108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047482798
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1073/pnas.1308141110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046049525
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1073/pnas.1512408112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031819541
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1098/rspb.2014.1137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043111411
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1111/j.1469-8986.2012.01461.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034271541
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1126/science.1239052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044115896
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1146/annurev.neuro.051508.135550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033969156
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1152/jn.2000.83.4.2453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074620750
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1167/12.6.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048610919
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1177/0956797613501520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008106780
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1523/jneurosci.1770-13.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002316391
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.411097.a schema:alternateName University Hospital Cologne
136 schema:name Cognitive Neuroscience (INM3), Institute of Neuroscience and Medicine, Research Centre Juelich, Germany
137 Department of Neurology, University Hospital Cologne, Germany
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.8385.6 schema:alternateName Forschungszentrum Jülich
140 schema:name Cognitive Neuroscience (INM3), Institute of Neuroscience and Medicine, Research Centre Juelich, Germany
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...