Generation of femtosecond γ-ray bursts stimulated by laser-driven hosing evolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09

AUTHORS

Yong Ma, Liming Chen, Dazhang Li, Wenchao Yan, Kai Huang, Min Chen, Zhengming Sheng, Kazuhisa Nakajima, Toshiki Tajima, Jie Zhang

ABSTRACT

The promising ability of a plasma wiggler based on laser wakefield acceleration to produce betatron X-rays with photon energies of a few keV to hundreds of keV and a peak brilliance of 10(22)-10(23) photons/s/mm(2)/mrad(2)/0.1%BW has been demonstrated, providing an alternative to large-scale synchrotron light sources. Most methods for generating betatron radiation are based on two typical approaches, one relying on an inherent transverse focusing electrostatic field, which induces transverse oscillation, and the other relying on the electron beam catching up with the rear part of the laser pulse, which results in strong electron resonance. Here, we present a new regime of betatron γ-ray radiation generated by stimulating a large-amplitude transverse oscillation of a continuously injected electron bunch through the hosing of the bubble induced by the carrier envelope phase (CEP) effect of the self-steepened laser pulse. Our method increases the critical photon energy to the MeV level, according to the results of particle-in-cell (PIC) simulations. The highly collimated, energetic and femtosecond γ-ray bursts that are produced in this way may provide an interesting potential means of exploring nuclear physics in table top photo nuclear reactions. More... »

PAGES

30491

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep30491

DOI

http://dx.doi.org/10.1038/srep30491

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050389514

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27457890


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Yong", 
        "id": "sg:person.0723540234.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723540234.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China.", 
            "IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Liming", 
        "id": "sg:person.0705066630.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705066630.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of High Energy Physics", 
          "id": "https://www.grid.ac/institutes/grid.418741.f", 
          "name": [
            "Institute of High Energy Physics, CAS, Beijing 100049, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Dazhang", 
        "id": "sg:person.01322405744.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322405744.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Wenchao", 
        "id": "sg:person.01206157344.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206157344.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Kai", 
        "id": "sg:person.0717374604.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717374604.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China.", 
            "Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Min", 
        "id": "sg:person.0723601334.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723601334.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Strathclyde", 
          "id": "https://www.grid.ac/institutes/grid.11984.35", 
          "name": [
            "IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China.", 
            "Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.", 
            "Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG, United Kingdom."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheng", 
        "givenName": "Zhengming", 
        "id": "sg:person.012150216172.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012150216172.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Basic Science", 
          "id": "https://www.grid.ac/institutes/grid.410720.0", 
          "name": [
            "Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712, Republic of Korea."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakajima", 
        "givenName": "Kazuhisa", 
        "id": "sg:person.012720671635.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012720671635.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Irvine", 
          "id": "https://www.grid.ac/institutes/grid.266093.8", 
          "name": [
            "Department of Physics and Astronomy, University of California, Irvine, California 92697, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tajima", 
        "givenName": "Toshiki", 
        "id": "sg:person.016710216215.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710216215.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China.", 
            "Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jie", 
        "id": "sg:person.01040027734.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040027734.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.107.255003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004825428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.255003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004825428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.095003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008438295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.095003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008438295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevstab.10.061301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015314999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevstab.10.061301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015314999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020161841", 
          "https://doi.org/10.1038/nphys2090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020930978", 
          "https://doi.org/10.1038/nphys846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1404336111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021099232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4900412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033294476", 
          "https://doi.org/10.1038/nphys1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033294476", 
          "https://doi.org/10.1038/nphys1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003400200795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036286271", 
          "https://doi.org/10.1007/s003400200795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049350656", 
          "https://doi.org/10.1038/ncomms2528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2010.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049566289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052746552", 
          "https://doi.org/10.1038/nphys1789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1373419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057700224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1395566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057702500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1799371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057822948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2833593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057877301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3109666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057912579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3458669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057955162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3566062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057975909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/25/8/056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059055944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.113.383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.113.383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.056505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.056505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.095002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.095002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.035001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.035001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.135004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.135004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.3544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.3544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198508557.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098721035"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "The promising ability of a plasma wiggler based on laser wakefield acceleration to produce betatron X-rays with photon energies of a few keV to hundreds of keV and a peak brilliance of 10(22)-10(23)\u2009photons/s/mm(2)/mrad(2)/0.1%BW has been demonstrated, providing an alternative to large-scale synchrotron light sources. Most methods for generating betatron radiation are based on two typical approaches, one relying on an inherent transverse focusing electrostatic field, which induces transverse oscillation, and the other relying on the electron beam catching up with the rear part of the laser pulse, which results in strong electron resonance. Here, we present a new regime of betatron \u03b3-ray radiation generated by stimulating a large-amplitude transverse oscillation of a continuously injected electron bunch through the hosing of the bubble induced by the carrier envelope phase (CEP) effect of the self-steepened laser pulse. Our method increases the critical photon energy to the MeV level, according to the results of particle-in-cell (PIC) simulations. The highly collimated, energetic and femtosecond \u03b3-ray bursts that are produced in this way may provide an interesting potential means of exploring nuclear physics in table top photo nuclear reactions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep30491", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Generation of femtosecond \u03b3-ray bursts stimulated by laser-driven hosing evolution", 
    "pagination": "30491", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f00a3ca065ed30b581f29fcc28e9f6938aac9f8a9616b4eca561a749ea7b56cd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27457890"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep30491"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050389514"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep30491", 
      "https://app.dimensions.ai/details/publication/pub.1050389514"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2016/160726/srep30491/full/srep30491.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep30491'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep30491'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep30491'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep30491'


 

This table displays all metadata directly associated to this object as RDF triples.

255 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep30491 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nab7483735bde4cd085fcbdc1502b0f18
4 schema:citation sg:pub.10.1007/s003400200795
5 sg:pub.10.1038/ncomms2528
6 sg:pub.10.1038/nphys1404
7 sg:pub.10.1038/nphys1789
8 sg:pub.10.1038/nphys2090
9 sg:pub.10.1038/nphys846
10 https://doi.org/10.1016/j.nima.2010.02.020
11 https://doi.org/10.1063/1.1373419
12 https://doi.org/10.1063/1.1395566
13 https://doi.org/10.1063/1.1799371
14 https://doi.org/10.1063/1.2833593
15 https://doi.org/10.1063/1.3109666
16 https://doi.org/10.1063/1.3458669
17 https://doi.org/10.1063/1.3566062
18 https://doi.org/10.1063/1.4900412
19 https://doi.org/10.1073/pnas.1404336111
20 https://doi.org/10.1088/0256-307x/25/8/056
21 https://doi.org/10.1093/acprof:oso/9780198508557.001.0001
22 https://doi.org/10.1103/physrev.113.383
23 https://doi.org/10.1103/physreve.65.056505
24 https://doi.org/10.1103/physrevlett.100.095002
25 https://doi.org/10.1103/physrevlett.103.035001
26 https://doi.org/10.1103/physrevlett.103.135004
27 https://doi.org/10.1103/physrevlett.105.095003
28 https://doi.org/10.1103/physrevlett.107.255003
29 https://doi.org/10.1103/physrevlett.43.267
30 https://doi.org/10.1103/physrevlett.73.3544
31 https://doi.org/10.1103/physrevlett.83.1978
32 https://doi.org/10.1103/physrevlett.93.135005
33 https://doi.org/10.1103/physrevstab.10.061301
34 https://doi.org/10.1103/revmodphys.81.1229
35 https://doi.org/10.1103/revmodphys.81.163
36 https://doi.org/10.1103/revmodphys.85.1
37 schema:datePublished 2016-09
38 schema:datePublishedReg 2016-09-01
39 schema:description The promising ability of a plasma wiggler based on laser wakefield acceleration to produce betatron X-rays with photon energies of a few keV to hundreds of keV and a peak brilliance of 10(22)-10(23) photons/s/mm(2)/mrad(2)/0.1%BW has been demonstrated, providing an alternative to large-scale synchrotron light sources. Most methods for generating betatron radiation are based on two typical approaches, one relying on an inherent transverse focusing electrostatic field, which induces transverse oscillation, and the other relying on the electron beam catching up with the rear part of the laser pulse, which results in strong electron resonance. Here, we present a new regime of betatron γ-ray radiation generated by stimulating a large-amplitude transverse oscillation of a continuously injected electron bunch through the hosing of the bubble induced by the carrier envelope phase (CEP) effect of the self-steepened laser pulse. Our method increases the critical photon energy to the MeV level, according to the results of particle-in-cell (PIC) simulations. The highly collimated, energetic and femtosecond γ-ray bursts that are produced in this way may provide an interesting potential means of exploring nuclear physics in table top photo nuclear reactions.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N07f403d653fb4a6ba07d6fc303dcec1f
44 Nf7430fada9454ba5a23fe20e4d3a6ad5
45 sg:journal.1045337
46 schema:name Generation of femtosecond γ-ray bursts stimulated by laser-driven hosing evolution
47 schema:pagination 30491
48 schema:productId N2dc46ae22ab84e399fbf798742409cc0
49 N91d51a71a1dd48fe8c98de88682c0a88
50 Na5ac4555a6f34e6f9a2c45f9e8b53b1f
51 Nb68f785cb6a5418eb62584baa688e485
52 Nfd07e35e404c4972879e085d75071972
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050389514
54 https://doi.org/10.1038/srep30491
55 schema:sdDatePublished 2019-04-10T15:08
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N2947859306a04698a190a1c811a3fee8
58 schema:url http://www.nature.com/srep/2016/160726/srep30491/full/srep30491.html
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N07f403d653fb4a6ba07d6fc303dcec1f schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N175cc89925844649a6e70de0c83b10ee rdf:first sg:person.01322405744.25
65 rdf:rest Nff29ce90f0e341be93b41ce8bb726cc7
66 N2947859306a04698a190a1c811a3fee8 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N2a2e61ca29f2401a9e0b555f933327a8 rdf:first sg:person.01040027734.79
69 rdf:rest rdf:nil
70 N2dc46ae22ab84e399fbf798742409cc0 schema:name pubmed_id
71 schema:value 27457890
72 rdf:type schema:PropertyValue
73 N336f4a45932f4d06a7238fbf96607800 rdf:first sg:person.0723601334.36
74 rdf:rest Nec1f2846673e4997aab063876d8a221b
75 N91d51a71a1dd48fe8c98de88682c0a88 schema:name dimensions_id
76 schema:value pub.1050389514
77 rdf:type schema:PropertyValue
78 Na25c8fc4a3ba47ebb3c50ff10e667365 rdf:first sg:person.016710216215.40
79 rdf:rest N2a2e61ca29f2401a9e0b555f933327a8
80 Na5ac4555a6f34e6f9a2c45f9e8b53b1f schema:name readcube_id
81 schema:value f00a3ca065ed30b581f29fcc28e9f6938aac9f8a9616b4eca561a749ea7b56cd
82 rdf:type schema:PropertyValue
83 Nab7483735bde4cd085fcbdc1502b0f18 rdf:first sg:person.0723540234.52
84 rdf:rest Nf1e13dca1a5844ec8fb349e339da36ac
85 Nb68f785cb6a5418eb62584baa688e485 schema:name doi
86 schema:value 10.1038/srep30491
87 rdf:type schema:PropertyValue
88 Nec1f2846673e4997aab063876d8a221b rdf:first sg:person.012150216172.63
89 rdf:rest Nfe643c8854674138b3dabe51ace44a55
90 Nf1e13dca1a5844ec8fb349e339da36ac rdf:first sg:person.0705066630.32
91 rdf:rest N175cc89925844649a6e70de0c83b10ee
92 Nf7430fada9454ba5a23fe20e4d3a6ad5 schema:volumeNumber 6
93 rdf:type schema:PublicationVolume
94 Nfd07e35e404c4972879e085d75071972 schema:name nlm_unique_id
95 schema:value 101563288
96 rdf:type schema:PropertyValue
97 Nfe643c8854674138b3dabe51ace44a55 rdf:first sg:person.012720671635.69
98 rdf:rest Na25c8fc4a3ba47ebb3c50ff10e667365
99 Nff29ce90f0e341be93b41ce8bb726cc7 rdf:first sg:person.01206157344.87
100 rdf:rest Nffda0106b49a4801a44ec7e5af7c28e4
101 Nffda0106b49a4801a44ec7e5af7c28e4 rdf:first sg:person.0717374604.51
102 rdf:rest N336f4a45932f4d06a7238fbf96607800
103 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
104 schema:name Physical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
107 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
108 rdf:type schema:DefinedTerm
109 sg:journal.1045337 schema:issn 2045-2322
110 schema:name Scientific Reports
111 rdf:type schema:Periodical
112 sg:person.01040027734.79 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
113 schema:familyName Zhang
114 schema:givenName Jie
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040027734.79
116 rdf:type schema:Person
117 sg:person.01206157344.87 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
118 schema:familyName Yan
119 schema:givenName Wenchao
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206157344.87
121 rdf:type schema:Person
122 sg:person.012150216172.63 schema:affiliation https://www.grid.ac/institutes/grid.11984.35
123 schema:familyName Sheng
124 schema:givenName Zhengming
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012150216172.63
126 rdf:type schema:Person
127 sg:person.012720671635.69 schema:affiliation https://www.grid.ac/institutes/grid.410720.0
128 schema:familyName Nakajima
129 schema:givenName Kazuhisa
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012720671635.69
131 rdf:type schema:Person
132 sg:person.01322405744.25 schema:affiliation https://www.grid.ac/institutes/grid.418741.f
133 schema:familyName Li
134 schema:givenName Dazhang
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322405744.25
136 rdf:type schema:Person
137 sg:person.016710216215.40 schema:affiliation https://www.grid.ac/institutes/grid.266093.8
138 schema:familyName Tajima
139 schema:givenName Toshiki
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710216215.40
141 rdf:type schema:Person
142 sg:person.0705066630.32 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
143 schema:familyName Chen
144 schema:givenName Liming
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705066630.32
146 rdf:type schema:Person
147 sg:person.0717374604.51 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
148 schema:familyName Huang
149 schema:givenName Kai
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717374604.51
151 rdf:type schema:Person
152 sg:person.0723540234.52 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
153 schema:familyName Ma
154 schema:givenName Yong
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723540234.52
156 rdf:type schema:Person
157 sg:person.0723601334.36 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
158 schema:familyName Chen
159 schema:givenName Min
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723601334.36
161 rdf:type schema:Person
162 sg:pub.10.1007/s003400200795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036286271
163 https://doi.org/10.1007/s003400200795
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/ncomms2528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049350656
166 https://doi.org/10.1038/ncomms2528
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nphys1404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033294476
169 https://doi.org/10.1038/nphys1404
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nphys1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052746552
172 https://doi.org/10.1038/nphys1789
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nphys2090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020161841
175 https://doi.org/10.1038/nphys2090
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nphys846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020930978
178 https://doi.org/10.1038/nphys846
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.nima.2010.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049566289
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.1373419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700224
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1063/1.1395566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702500
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.1799371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057822948
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1063/1.2833593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057877301
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.3109666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057912579
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1063/1.3458669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057955162
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.3566062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057975909
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1063/1.4900412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026792672
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1073/pnas.1404336111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021099232
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1088/0256-307x/25/8/056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059055944
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/acprof:oso/9780198508557.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098721035
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrev.113.383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060421364
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physreve.65.056505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060728532
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.100.095002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753018
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.103.035001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755697
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.103.135004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756050
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.105.095003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008438295
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevlett.107.255003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004825428
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.43.267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784401
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.73.3544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810110
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.83.1978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819968
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.93.135005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829047
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevstab.10.061301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015314999
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/revmodphys.81.1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839670
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/revmodphys.81.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839676
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/revmodphys.85.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015710152
233 rdf:type schema:CreativeWork
234 https://www.grid.ac/institutes/grid.11984.35 schema:alternateName University of Strathclyde
235 schema:name Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
236 Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG, United Kingdom.
237 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China.
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.16821.3c schema:alternateName Shanghai Jiao Tong University
240 schema:name Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China.
241 Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
242 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China.
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.266093.8 schema:alternateName University of California, Irvine
245 schema:name Department of Physics and Astronomy, University of California, Irvine, California 92697, USA.
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.410720.0 schema:alternateName Institute for Basic Science
248 schema:name Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712, Republic of Korea.
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.418741.f schema:alternateName Institute of High Energy Physics
251 schema:name Institute of High Energy Physics, CAS, Beijing 100049, China.
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.458438.6 schema:alternateName Institute of Physics
254 schema:name Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China.
255 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...