Experimental realization of equiangular three-state quantum key distribution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09

AUTHORS

Matteo Schiavon, Giuseppe Vallone, Paolo Villoresi

ABSTRACT

Quantum key distribution using three states in equiangular configuration combines a security threshold comparable with the one of the Bennett-Brassard 1984 protocol and a quantum bit error rate (QBER) estimation that does not need to reveal part of the key. We implement an entanglement-based version of the Renes 2004 protocol, using only passive optic elements in a linear scheme for the positive-operator valued measure (POVM), generating an asymptotic secure key rate of more than 10 kbit/s, with a mean QBER of 1.6%. We then demonstrate its security in the case of finite key and evaluate the key rate for both collective and general attacks. More... »

PAGES

30089

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep30089

DOI

http://dx.doi.org/10.1038/srep30089

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008535622

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27465643


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Padua", 
          "id": "https://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Dipartimento di Ingegneria dell'Informazione, Universit\u00e0 di Padova, via Venezia 15, 35131 Padova, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schiavon", 
        "givenName": "Matteo", 
        "id": "sg:person.013216016571.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216016571.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Fotonica e Nanotecnologie", 
          "id": "https://www.grid.ac/institutes/grid.472645.6", 
          "name": [
            "Dipartimento di Ingegneria dell'Informazione, Universit\u00e0 di Padova, via Venezia 15, 35131 Padova, Italy.", 
            "Istituto di Fotonica e Nanotecnologie, CNR, Padova, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vallone", 
        "givenName": "Giuseppe", 
        "id": "sg:person.01003160776.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003160776.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Fotonica e Nanotecnologie", 
          "id": "https://www.grid.ac/institutes/grid.472645.6", 
          "name": [
            "Dipartimento di Ingegneria dell'Informazione, Universit\u00e0 di Padova, via Venezia 15, 35131 Padova, Italy.", 
            "Istituto di Fotonica e Nanotecnologie, CNR, Padova, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villoresi", 
        "givenName": "Paolo", 
        "id": "sg:person.01264372042.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264372042.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.64.012303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000221873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.64.012303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000221873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.015377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000593961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.032316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001886138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.032316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001886138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.80.032327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002649023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.80.032327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002649023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.020504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003749699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.020504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003749699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.040503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006430968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.040503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006430968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.200501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012756567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.200501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012756567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.042342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013335737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.042342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013335737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/14/11/113020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019079857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.167904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021883664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.167904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021883664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.040305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035941280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.040305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035941280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037495359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037495359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.052327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038414703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.052327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038414703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340008244056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039449510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.73.012316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047805257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.73.012316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047805257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.052314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053125989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.052314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053125989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1963.10500830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.032308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060512785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.032308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060512785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804661"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "Quantum key distribution using three states in equiangular configuration combines a security threshold comparable with the one of the Bennett-Brassard 1984 protocol and a quantum bit error rate (QBER) estimation that does not need to reveal part of the key. We implement an entanglement-based version of the Renes 2004 protocol, using only passive optic elements in a linear scheme for the positive-operator valued measure (POVM), generating an asymptotic secure key rate of more than 10\u2009kbit/s, with a mean QBER of 1.6%. We then demonstrate its security in the case of finite key and evaluate the key rate for both collective and general attacks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep30089", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Experimental realization of equiangular three-state quantum key distribution", 
    "pagination": "30089", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28aa513bd68c088d7698f145d212e696d7d540808f9c0845aa2b12b37d7ff093"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27465643"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep30089"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008535622"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep30089", 
      "https://app.dimensions.ai/details/publication/pub.1008535622"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2016/160728/srep30089/full/srep30089.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep30089'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep30089'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep30089'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep30089'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      48 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep30089 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nb382ab1c87264894ae32c5406e52159d
4 schema:citation https://doi.org/10.1080/01621459.1963.10500830
5 https://doi.org/10.1080/09500340008244056
6 https://doi.org/10.1088/1367-2630/14/11/113020
7 https://doi.org/10.1103/physreva.63.040305
8 https://doi.org/10.1103/physreva.64.012303
9 https://doi.org/10.1103/physreva.69.032316
10 https://doi.org/10.1103/physreva.70.052314
11 https://doi.org/10.1103/physreva.73.012316
12 https://doi.org/10.1103/physreva.74.042342
13 https://doi.org/10.1103/physreva.80.032327
14 https://doi.org/10.1103/physreva.90.032308
15 https://doi.org/10.1103/physreva.90.052327
16 https://doi.org/10.1103/physrevlett.100.200501
17 https://doi.org/10.1103/physrevlett.102.020504
18 https://doi.org/10.1103/physrevlett.68.3121
19 https://doi.org/10.1103/physrevlett.90.167904
20 https://doi.org/10.1103/physrevlett.94.040503
21 https://doi.org/10.1103/revmodphys.81.1301
22 https://doi.org/10.1364/oe.15.015377
23 schema:datePublished 2016-09
24 schema:datePublishedReg 2016-09-01
25 schema:description Quantum key distribution using three states in equiangular configuration combines a security threshold comparable with the one of the Bennett-Brassard 1984 protocol and a quantum bit error rate (QBER) estimation that does not need to reveal part of the key. We implement an entanglement-based version of the Renes 2004 protocol, using only passive optic elements in a linear scheme for the positive-operator valued measure (POVM), generating an asymptotic secure key rate of more than 10 kbit/s, with a mean QBER of 1.6%. We then demonstrate its security in the case of finite key and evaluate the key rate for both collective and general attacks.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf Ncad8238178b947f1a64d3253207a71c1
30 Nf6f06ed34e624682a65229961425eeb4
31 sg:journal.1045337
32 schema:name Experimental realization of equiangular three-state quantum key distribution
33 schema:pagination 30089
34 schema:productId N010f6e43bad34300b8d18e38ab44a6f6
35 N5acf1a728a1c4e9f8629cdca9bce4227
36 N684873f075c3432f87dceaade7febd27
37 N6b19f4f6822048148cd13589a1293fd9
38 Nf32472fffcd64640ba52021c33b074f4
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008535622
40 https://doi.org/10.1038/srep30089
41 schema:sdDatePublished 2019-04-10T20:03
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nc781c23436b64e2daa65ecfd268b46eb
44 schema:url http://www.nature.com/srep/2016/160728/srep30089/full/srep30089.html
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N010f6e43bad34300b8d18e38ab44a6f6 schema:name dimensions_id
49 schema:value pub.1008535622
50 rdf:type schema:PropertyValue
51 N5acf1a728a1c4e9f8629cdca9bce4227 schema:name pubmed_id
52 schema:value 27465643
53 rdf:type schema:PropertyValue
54 N613936fe4a5a479fa261a7c7138a5834 rdf:first sg:person.01264372042.18
55 rdf:rest rdf:nil
56 N684873f075c3432f87dceaade7febd27 schema:name nlm_unique_id
57 schema:value 101563288
58 rdf:type schema:PropertyValue
59 N6b19f4f6822048148cd13589a1293fd9 schema:name doi
60 schema:value 10.1038/srep30089
61 rdf:type schema:PropertyValue
62 Nb24653313bba4f4daa6c851583e48ff4 rdf:first sg:person.01003160776.72
63 rdf:rest N613936fe4a5a479fa261a7c7138a5834
64 Nb382ab1c87264894ae32c5406e52159d rdf:first sg:person.013216016571.51
65 rdf:rest Nb24653313bba4f4daa6c851583e48ff4
66 Nc781c23436b64e2daa65ecfd268b46eb schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Ncad8238178b947f1a64d3253207a71c1 schema:volumeNumber 6
69 rdf:type schema:PublicationVolume
70 Nf32472fffcd64640ba52021c33b074f4 schema:name readcube_id
71 schema:value 28aa513bd68c088d7698f145d212e696d7d540808f9c0845aa2b12b37d7ff093
72 rdf:type schema:PropertyValue
73 Nf6f06ed34e624682a65229961425eeb4 schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
76 schema:name Physical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
79 schema:name Quantum Physics
80 rdf:type schema:DefinedTerm
81 sg:journal.1045337 schema:issn 2045-2322
82 schema:name Scientific Reports
83 rdf:type schema:Periodical
84 sg:person.01003160776.72 schema:affiliation https://www.grid.ac/institutes/grid.472645.6
85 schema:familyName Vallone
86 schema:givenName Giuseppe
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003160776.72
88 rdf:type schema:Person
89 sg:person.01264372042.18 schema:affiliation https://www.grid.ac/institutes/grid.472645.6
90 schema:familyName Villoresi
91 schema:givenName Paolo
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264372042.18
93 rdf:type schema:Person
94 sg:person.013216016571.51 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
95 schema:familyName Schiavon
96 schema:givenName Matteo
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216016571.51
98 rdf:type schema:Person
99 https://doi.org/10.1080/01621459.1963.10500830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299773
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1080/09500340008244056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039449510
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1088/1367-2630/14/11/113020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019079857
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physreva.63.040305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035941280
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physreva.64.012303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000221873
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physreva.69.032316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001886138
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physreva.70.052314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053125989
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physreva.73.012316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047805257
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physreva.74.042342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013335737
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physreva.80.032327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002649023
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physreva.90.032308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060512785
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physreva.90.052327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038414703
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.100.200501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012756567
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevlett.102.020504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003749699
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.68.3121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804661
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.90.167904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021883664
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.94.040503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006430968
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/revmodphys.81.1301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037495359
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1364/oe.15.015377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000593961
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.472645.6 schema:alternateName Istituto di Fotonica e Nanotecnologie
138 schema:name Dipartimento di Ingegneria dell'Informazione, Università di Padova, via Venezia 15, 35131 Padova, Italy.
139 Istituto di Fotonica e Nanotecnologie, CNR, Padova, Italy.
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.5608.b schema:alternateName University of Padua
142 schema:name Dipartimento di Ingegneria dell'Informazione, Università di Padova, via Venezia 15, 35131 Padova, Italy.
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...