Optimal processes for probabilistic work extraction beyond the second law View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09

AUTHORS

Vasco Cavina, Andrea Mari, Vittorio Giovannetti

ABSTRACT

According to the second law of thermodynamics, for every transformation performed on a system which is in contact with an environment of fixed temperature, the average extracted work is bounded by the decrease of the free energy of the system. However, in a single realization of a generic process, the extracted work is subject to statistical fluctuations which may allow for probabilistic violations of the previous bound. We are interested in enhancing this effect, i.e. we look for thermodynamic processes that maximize the probability of extracting work above a given arbitrary threshold. For any process obeying the Jarzynski identity, we determine an upper bound for the work extraction probability that depends also on the minimum amount of work that we are willing to extract in case of failure, or on the average work we wish to extract from the system. Then we show that this bound can be saturated within the thermodynamic formalism of quantum discrete processes composed by sequences of unitary quenches and complete thermalizations. We explicitly determine the optimal protocol which is given by two quasi-static isothermal transformations separated by a finite unitary quench. More... »

PAGES

29282

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep29282

DOI

http://dx.doi.org/10.1038/srep29282

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006828899

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27377557


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cavina", 
        "givenName": "Vasco", 
        "id": "sg:person.012732546251.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012732546251.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mari", 
        "givenName": "Andrea", 
        "id": "sg:person.01166013734.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166013734.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giovannetti", 
        "givenName": "Vittorio", 
        "id": "sg:person.0751566121.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1367-2630/17/9/095003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003138749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.050102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003641159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.050102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003641159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004415981", 
          "https://doi.org/10.1038/ncomms2712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01341281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007509467", 
          "https://doi.org/10.1007/bf01341281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1071152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010081056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010952195", 
          "https://doi.org/10.1038/nphys3169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/49/14/143001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011095890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018501444", 
          "https://doi.org/10.1038/nphys1821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-062910-140506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018545718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020106863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020106863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020571860", 
          "https://doi.org/10.1038/nature04061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020571860", 
          "https://doi.org/10.1038/nature04061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020571860", 
          "https://doi.org/10.1038/nature04061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027667555", 
          "https://doi.org/10.1038/ncomms5185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.2361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029892168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.2361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029892168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.046129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031135839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.046129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031135839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031347512", 
          "https://doi.org/10.1038/ncomms3059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036208115", 
          "https://doi.org/10.1038/nature10872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.180601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036221538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.180601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036221538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00107514.2016.1201896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036938245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.250601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041239810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.250601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041239810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041680276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041680276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042778259", 
          "https://doi.org/10.1038/nphys3197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/15/3/033022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044485374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050240206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050240206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050584535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050584535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3047170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057898636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.2401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.2401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.050601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.050601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511804441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098700691"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "According to the second law of thermodynamics, for every transformation performed on a system which is in contact with an environment of fixed temperature, the average extracted work is bounded by the decrease of the free energy of the system. However, in a single realization of a generic process, the extracted work is subject to statistical fluctuations which may allow for probabilistic violations of the previous bound. We are interested in enhancing this effect, i.e. we look for thermodynamic processes that maximize the probability of extracting work above a given arbitrary threshold. For any process obeying the Jarzynski identity, we determine an upper bound for the work extraction probability that depends also on the minimum amount of work that we are willing to extract in case of failure, or on the average work we wish to extract from the system. Then we show that this bound can be saturated within the thermodynamic formalism of quantum discrete processes composed by sequences of unitary quenches and complete thermalizations. We explicitly determine the optimal protocol which is given by two quasi-static isothermal transformations separated by a finite unitary quench.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep29282", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3795220", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3799159", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Optimal processes for probabilistic work extraction beyond the second law", 
    "pagination": "29282", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "208775c4d8efda9d06154a27c9675b482f7c854889df5c5d532b4716dc66c613"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27377557"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep29282"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006828899"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep29282", 
      "https://app.dimensions.ai/details/publication/pub.1006828899"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2016/160705/srep29282/full/srep29282.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep29282'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep29282'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep29282'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep29282'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep29282 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ne722692564be451d8ee16eaa3f330d2b
4 schema:citation sg:pub.10.1007/bf01341281
5 sg:pub.10.1038/nature04061
6 sg:pub.10.1038/nature10872
7 sg:pub.10.1038/ncomms2712
8 sg:pub.10.1038/ncomms3059
9 sg:pub.10.1038/ncomms5185
10 sg:pub.10.1038/nphys1821
11 sg:pub.10.1038/nphys3169
12 sg:pub.10.1038/nphys3197
13 https://doi.org/10.1017/cbo9780511804441
14 https://doi.org/10.1063/1.3047170
15 https://doi.org/10.1080/00107514.2016.1201896
16 https://doi.org/10.1088/1367-2630/15/3/033022
17 https://doi.org/10.1088/1367-2630/17/9/095003
18 https://doi.org/10.1088/1751-8113/49/14/143001
19 https://doi.org/10.1103/physreve.61.2361
20 https://doi.org/10.1103/physreve.73.046129
21 https://doi.org/10.1103/physreve.75.050102
22 https://doi.org/10.1103/physrevlett.109.180601
23 https://doi.org/10.1103/physrevlett.113.140601
24 https://doi.org/10.1103/physrevlett.113.250601
25 https://doi.org/10.1103/physrevlett.71.2401
26 https://doi.org/10.1103/physrevlett.78.2690
27 https://doi.org/10.1103/physrevlett.89.050601
28 https://doi.org/10.1103/revmodphys.81.1665
29 https://doi.org/10.1103/revmodphys.83.771
30 https://doi.org/10.1126/science.1071152
31 https://doi.org/10.1146/annurev-conmatphys-062910-140506
32 schema:datePublished 2016-09
33 schema:datePublishedReg 2016-09-01
34 schema:description According to the second law of thermodynamics, for every transformation performed on a system which is in contact with an environment of fixed temperature, the average extracted work is bounded by the decrease of the free energy of the system. However, in a single realization of a generic process, the extracted work is subject to statistical fluctuations which may allow for probabilistic violations of the previous bound. We are interested in enhancing this effect, i.e. we look for thermodynamic processes that maximize the probability of extracting work above a given arbitrary threshold. For any process obeying the Jarzynski identity, we determine an upper bound for the work extraction probability that depends also on the minimum amount of work that we are willing to extract in case of failure, or on the average work we wish to extract from the system. Then we show that this bound can be saturated within the thermodynamic formalism of quantum discrete processes composed by sequences of unitary quenches and complete thermalizations. We explicitly determine the optimal protocol which is given by two quasi-static isothermal transformations separated by a finite unitary quench.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N8cff998b51424ee9a3e2c1263a7ea947
39 Nefcd2ef1e28640b18eaf8b3aaad49f85
40 sg:journal.1045337
41 schema:name Optimal processes for probabilistic work extraction beyond the second law
42 schema:pagination 29282
43 schema:productId N149960263f514c5e83347d76c4aeb38b
44 N269abf05c4ae46c488f319a9b3987f2e
45 N2b816c25d46f4d8db951791e5cc573da
46 Nab705dc707b7416081893bde6fc0733b
47 Ne2e7c3a2fcaf4427a2ef287fae941b1c
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006828899
49 https://doi.org/10.1038/srep29282
50 schema:sdDatePublished 2019-04-10T14:16
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N2440e38d4a1e48c1bec1ed2335ca93fd
53 schema:url http://www.nature.com/srep/2016/160705/srep29282/full/srep29282.html
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N149960263f514c5e83347d76c4aeb38b schema:name dimensions_id
58 schema:value pub.1006828899
59 rdf:type schema:PropertyValue
60 N2440e38d4a1e48c1bec1ed2335ca93fd schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N269abf05c4ae46c488f319a9b3987f2e schema:name doi
63 schema:value 10.1038/srep29282
64 rdf:type schema:PropertyValue
65 N2b816c25d46f4d8db951791e5cc573da schema:name nlm_unique_id
66 schema:value 101563288
67 rdf:type schema:PropertyValue
68 N5cf810d83db84aa8aebd7a05dc945e16 schema:name NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy.
69 rdf:type schema:Organization
70 N8cff998b51424ee9a3e2c1263a7ea947 schema:volumeNumber 6
71 rdf:type schema:PublicationVolume
72 Naa428958929b4337a375b41d9fa0cfab schema:name NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy.
73 rdf:type schema:Organization
74 Nab705dc707b7416081893bde6fc0733b schema:name readcube_id
75 schema:value 208775c4d8efda9d06154a27c9675b482f7c854889df5c5d532b4716dc66c613
76 rdf:type schema:PropertyValue
77 Nbecc246ece6c4ed09f2fa272b8d1fa77 rdf:first sg:person.01166013734.75
78 rdf:rest Ne92e918adfb943479d97cf7f11fe3c87
79 Nca7ac2ad04794610a3b5d0fa361e66a4 schema:name NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy.
80 rdf:type schema:Organization
81 Ne2e7c3a2fcaf4427a2ef287fae941b1c schema:name pubmed_id
82 schema:value 27377557
83 rdf:type schema:PropertyValue
84 Ne722692564be451d8ee16eaa3f330d2b rdf:first sg:person.012732546251.42
85 rdf:rest Nbecc246ece6c4ed09f2fa272b8d1fa77
86 Ne92e918adfb943479d97cf7f11fe3c87 rdf:first sg:person.0751566121.99
87 rdf:rest rdf:nil
88 Nefcd2ef1e28640b18eaf8b3aaad49f85 schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
94 schema:name Statistics
95 rdf:type schema:DefinedTerm
96 sg:grant.3795220 http://pending.schema.org/fundedItem sg:pub.10.1038/srep29282
97 rdf:type schema:MonetaryGrant
98 sg:grant.3799159 http://pending.schema.org/fundedItem sg:pub.10.1038/srep29282
99 rdf:type schema:MonetaryGrant
100 sg:journal.1045337 schema:issn 2045-2322
101 schema:name Scientific Reports
102 rdf:type schema:Periodical
103 sg:person.01166013734.75 schema:affiliation Naa428958929b4337a375b41d9fa0cfab
104 schema:familyName Mari
105 schema:givenName Andrea
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166013734.75
107 rdf:type schema:Person
108 sg:person.012732546251.42 schema:affiliation Nca7ac2ad04794610a3b5d0fa361e66a4
109 schema:familyName Cavina
110 schema:givenName Vasco
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012732546251.42
112 rdf:type schema:Person
113 sg:person.0751566121.99 schema:affiliation N5cf810d83db84aa8aebd7a05dc945e16
114 schema:familyName Giovannetti
115 schema:givenName Vittorio
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99
117 rdf:type schema:Person
118 sg:pub.10.1007/bf01341281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007509467
119 https://doi.org/10.1007/bf01341281
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature04061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020571860
122 https://doi.org/10.1038/nature04061
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nature10872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036208115
125 https://doi.org/10.1038/nature10872
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/ncomms2712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004415981
128 https://doi.org/10.1038/ncomms2712
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/ncomms3059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031347512
131 https://doi.org/10.1038/ncomms3059
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/ncomms5185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027667555
134 https://doi.org/10.1038/ncomms5185
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nphys1821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018501444
137 https://doi.org/10.1038/nphys1821
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nphys3169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010952195
140 https://doi.org/10.1038/nphys3169
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nphys3197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042778259
143 https://doi.org/10.1038/nphys3197
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1017/cbo9780511804441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700691
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.3047170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057898636
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1080/00107514.2016.1201896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036938245
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1088/1367-2630/15/3/033022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044485374
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1088/1367-2630/17/9/095003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003138749
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/1751-8113/49/14/143001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011095890
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physreve.61.2361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029892168
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physreve.73.046129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031135839
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physreve.75.050102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003641159
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.109.180601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036221538
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.113.140601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020106863
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.113.250601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041239810
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.71.2401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807744
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.78.2690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050584535
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.89.050601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825119
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/revmodphys.81.1665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050240206
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/revmodphys.83.771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041680276
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.1071152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010081056
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1146/annurev-conmatphys-062910-140506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018545718
182 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...