Transitions in a genetic transcriptional regulatory system under Lévy motion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09

AUTHORS

Yayun Zheng, Larissa Serdukova, Jinqiao Duan, Jürgen Kurths

ABSTRACT

Based on a stochastic differential equation model for a single genetic regulatory system, we examine the dynamical effects of noisy fluctuations, arising in the synthesis reaction, on the evolution of the transcription factor activator in terms of its concentration. The fluctuations are modeled by Brownian motion and α-stable Lévy motion. Two deterministic quantities, the mean first exit time (MFET) and the first escape probability (FEP), are used to analyse the transitions from the low to high concentration states. A shorter MFET or higher FEP in the low concentration region facilitates such a transition. We have observed that higher noise intensities and larger jumps of the Lévy motion shortens the MFET and thus benefits transitions. The Lévy motion activates a transition from the low concentration region to the non-adjacent high concentration region, while Brownian motion can not induce this phenomenon. There are optimal proportions of Gaussian and non-Gaussian noises, which maximise the quantities MFET and FEP for each concentration, when the total sum of noise intensities are kept constant. Because a weaker stability indicates a higher transition probability, a new geometric concept is introduced to quantify the basin stability of the low concentration region, characterised by the escaping behaviour. More... »

PAGES

29274

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep29274

DOI

http://dx.doi.org/10.1038/srep29274

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005967477

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27411445


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feedback", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Noise", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Huazhong University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China.", 
            "Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yayun", 
        "id": "sg:person.016553704161.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016553704161.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cape Verde", 
          "id": "https://www.grid.ac/institutes/grid.442758.8", 
          "name": [
            "School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China.", 
            "Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.", 
            "Department of Science and Technology, University of Cape Verde, Praia 7600, Cape Verde."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Serdukova", 
        "givenName": "Larissa", 
        "id": "sg:person.010050632761.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010050632761.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Illinois Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.62813.3e", 
          "name": [
            "Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.", 
            "Department of Applied Mathematics, Illinois Institute of Technology,312-567-5335, Chicago 60616, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duan", 
        "givenName": "Jinqiao", 
        "id": "sg:person.013762441352.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762441352.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humboldt University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.", 
            "Research Domain on Transdisciplinary Concepts and Methods, Potsdam Institute for Climate Impact Research, PO Box 60 12 03, 14412 Potsdam, Germany.", 
            "Department of Physics, Humboldt University of Berlin, Newtonstrate 15, 12489 Berlin, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurths", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.01075465176.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075465176.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys2516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000041157", 
          "https://doi.org/10.1038/nphys2516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4936087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000769681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2005.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001447598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-011-0478-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003040375", 
          "https://doi.org/10.1007/s00285-011-0478-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1137455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003120723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-6-s1-s9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006125195", 
          "https://doi.org/10.1186/1752-0509-6-s1-s9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-8914(40)90098-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008146861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1242975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010138596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016508054", 
          "https://doi.org/10.1038/nature09116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016508054", 
          "https://doi.org/10.1038/nature09116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.260603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018221105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.260603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018221105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0197-7_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018252592", 
          "https://doi.org/10.1007/978-1-4612-0197-7_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0197-7_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018252592", 
          "https://doi.org/10.1007/978-1-4612-0197-7_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019709971", 
          "https://doi.org/10.1038/srep05764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13628-016-0027-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020035007", 
          "https://doi.org/10.1186/s13628-016-0027-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2011.06.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022296530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022830583", 
          "https://doi.org/10.1038/nature06199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0707904105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022831218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2014.02.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023531181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.040411297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023613466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1029756920", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03857-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029756920", 
          "https://doi.org/10.1007/978-3-662-03857-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03857-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029756920", 
          "https://doi.org/10.1007/978-3-662-03857-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.051911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030688101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.051911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030688101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031857499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.248102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034631447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.248102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034631447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1161427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035988238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0806349105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038129063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.biophys.37.032807.125928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038706133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041480310", 
          "https://doi.org/10.1038/nature04588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041480310", 
          "https://doi.org/10.1038/nature04588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041480310", 
          "https://doi.org/10.1038/nature04588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1117603109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048683295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1049456093", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0611-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049456093", 
          "https://doi.org/10.1007/978-1-4612-0611-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0611-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049456093", 
          "https://doi.org/10.1007/978-1-4612-0611-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4775758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052224557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/39/15/l01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/39/15/l01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.041907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.041907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.041101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060735777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.041101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060735777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120897262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062870053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219493708002469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062995112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219493715500045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062995321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/08-aop412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064390127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.1998.274.2.c531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083220335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898718232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511809781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098713390"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "Based on a stochastic differential equation model for a single genetic regulatory system, we examine the dynamical effects of noisy fluctuations, arising in the synthesis reaction, on the evolution of the transcription factor activator in terms of its concentration. The fluctuations are modeled by Brownian motion and \u03b1-stable L\u00e9vy motion. Two deterministic quantities, the mean first exit time (MFET) and the first escape probability (FEP), are used to analyse the transitions from the low to high concentration states. A shorter MFET or higher FEP in the low concentration region facilitates such a transition. We have observed that higher noise intensities and larger jumps of the L\u00e9vy motion shortens the MFET and thus benefits transitions. The L\u00e9vy motion activates a transition from the low concentration region to the non-adjacent high concentration region, while Brownian motion can not induce this phenomenon. There are optimal proportions of Gaussian and non-Gaussian noises, which maximise the quantities MFET and FEP for each concentration, when the total sum of noise intensities are kept constant. Because a weaker stability indicates a higher transition probability, a new geometric concept is introduced to quantify the basin stability of the low concentration region, characterised by the escaping behaviour.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep29274", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7181570", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Transitions in a genetic transcriptional regulatory system under L\u00e9vy motion", 
    "pagination": "29274", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1c6cf6807e432b7edddc67a0703616813652cbd15d610515600c99f627b70b04"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27411445"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep29274"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005967477"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep29274", 
      "https://app.dimensions.ai/details/publication/pub.1005967477"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2016/160714/srep29274/full/srep29274.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep29274'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep29274'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep29274'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep29274'


 

This table displays all metadata directly associated to this object as RDF triples.

274 TRIPLES      21 PREDICATES      79 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep29274 schema:about N38c0d2605cd34949a3bedcbed0344e78
2 N3b9acbb5357e462ab659e1bba2f69723
3 N40cfe2f21be447629877a252ad1f2d2e
4 N7b6893132454433e9e60dd1fdcc7e349
5 N9b61aa3187c34b0cbadf91b6a721db3c
6 Nb4438622b5e44ffeba6df7987429dfb6
7 Nb45a3cac012442baa1cf467eabd14450
8 Nb4d10d546bb2434cabf373fd5194dc56
9 Ncd44c856c0c44375853b71d04bbba8db
10 anzsrc-for:01
11 anzsrc-for:0104
12 schema:author Na2cac627c6874d2eafe6da9e7c97623f
13 schema:citation sg:pub.10.1007/978-1-4612-0197-7_11
14 sg:pub.10.1007/978-1-4612-0611-8
15 sg:pub.10.1007/978-3-662-03857-4
16 sg:pub.10.1007/s00285-011-0478-5
17 sg:pub.10.1038/nature04588
18 sg:pub.10.1038/nature06199
19 sg:pub.10.1038/nature09116
20 sg:pub.10.1038/nphys2516
21 sg:pub.10.1038/srep05764
22 sg:pub.10.1186/1752-0509-6-s1-s9
23 sg:pub.10.1186/s13628-016-0027-0
24 https://app.dimensions.ai/details/publication/pub.1029756920
25 https://app.dimensions.ai/details/publication/pub.1049456093
26 https://doi.org/10.1016/j.amc.2011.06.068
27 https://doi.org/10.1016/j.apm.2014.02.026
28 https://doi.org/10.1016/j.cell.2005.09.031
29 https://doi.org/10.1016/s0031-8914(40)90098-2
30 https://doi.org/10.1017/cbo9780511809781
31 https://doi.org/10.1063/1.4775758
32 https://doi.org/10.1063/1.4936087
33 https://doi.org/10.1073/pnas.040411297
34 https://doi.org/10.1073/pnas.0707904105
35 https://doi.org/10.1073/pnas.0806349105
36 https://doi.org/10.1073/pnas.1117603109
37 https://doi.org/10.1088/0305-4470/39/15/l01
38 https://doi.org/10.1103/physreve.70.041907
39 https://doi.org/10.1103/physreve.75.041101
40 https://doi.org/10.1103/physreve.84.051911
41 https://doi.org/10.1103/physrevlett.106.248102
42 https://doi.org/10.1103/physrevlett.95.260603
43 https://doi.org/10.1126/science.1137455
44 https://doi.org/10.1126/science.1161427
45 https://doi.org/10.1126/science.1242975
46 https://doi.org/10.1137/1.9780898718232
47 https://doi.org/10.1137/120897262
48 https://doi.org/10.1142/s0219493708002469
49 https://doi.org/10.1142/s0219493715500045
50 https://doi.org/10.1146/annurev.biophys.37.032807.125928
51 https://doi.org/10.1152/ajpcell.1998.274.2.c531
52 https://doi.org/10.1214/08-aop412
53 https://doi.org/10.1371/journal.pbio.0040309
54 schema:datePublished 2016-09
55 schema:datePublishedReg 2016-09-01
56 schema:description Based on a stochastic differential equation model for a single genetic regulatory system, we examine the dynamical effects of noisy fluctuations, arising in the synthesis reaction, on the evolution of the transcription factor activator in terms of its concentration. The fluctuations are modeled by Brownian motion and α-stable Lévy motion. Two deterministic quantities, the mean first exit time (MFET) and the first escape probability (FEP), are used to analyse the transitions from the low to high concentration states. A shorter MFET or higher FEP in the low concentration region facilitates such a transition. We have observed that higher noise intensities and larger jumps of the Lévy motion shortens the MFET and thus benefits transitions. The Lévy motion activates a transition from the low concentration region to the non-adjacent high concentration region, while Brownian motion can not induce this phenomenon. There are optimal proportions of Gaussian and non-Gaussian noises, which maximise the quantities MFET and FEP for each concentration, when the total sum of noise intensities are kept constant. Because a weaker stability indicates a higher transition probability, a new geometric concept is introduced to quantify the basin stability of the low concentration region, characterised by the escaping behaviour.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf Nad3996970c224ad1bf123459b29126b6
61 Nd852ec30064548afa8aeeb91dfe45277
62 sg:journal.1045337
63 schema:name Transitions in a genetic transcriptional regulatory system under Lévy motion
64 schema:pagination 29274
65 schema:productId N0197e2eebf5f464d93376ca510f0b3e0
66 N86af88226084470da2f1551c109e40a5
67 N89cd1b23079844b3aba508228e0028a4
68 N8c68b8cd4f06471ba2c4c1865594b186
69 Nd2f904d2ff404986a0e4b58c2f8ddfca
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005967477
71 https://doi.org/10.1038/srep29274
72 schema:sdDatePublished 2019-04-10T18:26
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N7ef89d04230d4d56aa648612924dae40
75 schema:url http://www.nature.com/srep/2016/160714/srep29274/full/srep29274.html
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N0197e2eebf5f464d93376ca510f0b3e0 schema:name dimensions_id
80 schema:value pub.1005967477
81 rdf:type schema:PropertyValue
82 N1f0f428a937b4ff4afa6a2e3b57ec51d rdf:first sg:person.013762441352.12
83 rdf:rest N74f042bcbe4e4227a5e6fdb5692ee6d9
84 N38c0d2605cd34949a3bedcbed0344e78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Stochastic Processes
86 rdf:type schema:DefinedTerm
87 N3b9acbb5357e462ab659e1bba2f69723 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Motion
89 rdf:type schema:DefinedTerm
90 N40cfe2f21be447629877a252ad1f2d2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Gene Expression Regulation
92 rdf:type schema:DefinedTerm
93 N74f042bcbe4e4227a5e6fdb5692ee6d9 rdf:first sg:person.01075465176.23
94 rdf:rest rdf:nil
95 N7b6893132454433e9e60dd1fdcc7e349 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Feedback
97 rdf:type schema:DefinedTerm
98 N7ef89d04230d4d56aa648612924dae40 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N86af88226084470da2f1551c109e40a5 schema:name doi
101 schema:value 10.1038/srep29274
102 rdf:type schema:PropertyValue
103 N89cd1b23079844b3aba508228e0028a4 schema:name readcube_id
104 schema:value 1c6cf6807e432b7edddc67a0703616813652cbd15d610515600c99f627b70b04
105 rdf:type schema:PropertyValue
106 N8c68b8cd4f06471ba2c4c1865594b186 schema:name pubmed_id
107 schema:value 27411445
108 rdf:type schema:PropertyValue
109 N9b61aa3187c34b0cbadf91b6a721db3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Models, Genetic
111 rdf:type schema:DefinedTerm
112 Na2cac627c6874d2eafe6da9e7c97623f rdf:first sg:person.016553704161.03
113 rdf:rest Nef39fcdeee3a44f8a15813b3b72b638e
114 Nad3996970c224ad1bf123459b29126b6 schema:volumeNumber 6
115 rdf:type schema:PublicationVolume
116 Nb4438622b5e44ffeba6df7987429dfb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Probability
118 rdf:type schema:DefinedTerm
119 Nb45a3cac012442baa1cf467eabd14450 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Transcription, Genetic
121 rdf:type schema:DefinedTerm
122 Nb4d10d546bb2434cabf373fd5194dc56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Time Factors
124 rdf:type schema:DefinedTerm
125 Ncd44c856c0c44375853b71d04bbba8db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Noise
127 rdf:type schema:DefinedTerm
128 Nd2f904d2ff404986a0e4b58c2f8ddfca schema:name nlm_unique_id
129 schema:value 101563288
130 rdf:type schema:PropertyValue
131 Nd852ec30064548afa8aeeb91dfe45277 schema:issueNumber 1
132 rdf:type schema:PublicationIssue
133 Nef39fcdeee3a44f8a15813b3b72b638e rdf:first sg:person.010050632761.59
134 rdf:rest N1f0f428a937b4ff4afa6a2e3b57ec51d
135 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
136 schema:name Mathematical Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
139 schema:name Statistics
140 rdf:type schema:DefinedTerm
141 sg:grant.7181570 http://pending.schema.org/fundedItem sg:pub.10.1038/srep29274
142 rdf:type schema:MonetaryGrant
143 sg:journal.1045337 schema:issn 2045-2322
144 schema:name Scientific Reports
145 rdf:type schema:Periodical
146 sg:person.010050632761.59 schema:affiliation https://www.grid.ac/institutes/grid.442758.8
147 schema:familyName Serdukova
148 schema:givenName Larissa
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010050632761.59
150 rdf:type schema:Person
151 sg:person.01075465176.23 schema:affiliation https://www.grid.ac/institutes/grid.7468.d
152 schema:familyName Kurths
153 schema:givenName Jürgen
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075465176.23
155 rdf:type schema:Person
156 sg:person.013762441352.12 schema:affiliation https://www.grid.ac/institutes/grid.62813.3e
157 schema:familyName Duan
158 schema:givenName Jinqiao
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762441352.12
160 rdf:type schema:Person
161 sg:person.016553704161.03 schema:affiliation https://www.grid.ac/institutes/grid.33199.31
162 schema:familyName Zheng
163 schema:givenName Yayun
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016553704161.03
165 rdf:type schema:Person
166 sg:pub.10.1007/978-1-4612-0197-7_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018252592
167 https://doi.org/10.1007/978-1-4612-0197-7_11
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/978-1-4612-0611-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049456093
170 https://doi.org/10.1007/978-1-4612-0611-8
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/978-3-662-03857-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029756920
173 https://doi.org/10.1007/978-3-662-03857-4
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s00285-011-0478-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003040375
176 https://doi.org/10.1007/s00285-011-0478-5
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nature04588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041480310
179 https://doi.org/10.1038/nature04588
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nature06199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022830583
182 https://doi.org/10.1038/nature06199
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature09116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016508054
185 https://doi.org/10.1038/nature09116
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nphys2516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000041157
188 https://doi.org/10.1038/nphys2516
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/srep05764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019709971
191 https://doi.org/10.1038/srep05764
192 rdf:type schema:CreativeWork
193 sg:pub.10.1186/1752-0509-6-s1-s9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006125195
194 https://doi.org/10.1186/1752-0509-6-s1-s9
195 rdf:type schema:CreativeWork
196 sg:pub.10.1186/s13628-016-0027-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020035007
197 https://doi.org/10.1186/s13628-016-0027-0
198 rdf:type schema:CreativeWork
199 https://app.dimensions.ai/details/publication/pub.1029756920 schema:CreativeWork
200 https://app.dimensions.ai/details/publication/pub.1049456093 schema:CreativeWork
201 https://doi.org/10.1016/j.amc.2011.06.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022296530
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.apm.2014.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023531181
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.cell.2005.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001447598
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/s0031-8914(40)90098-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008146861
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1017/cbo9780511809781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098713390
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1063/1.4775758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052224557
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1063/1.4936087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000769681
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1073/pnas.040411297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023613466
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1073/pnas.0707904105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022831218
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1073/pnas.0806349105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038129063
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1073/pnas.1117603109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048683295
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1088/0305-4470/39/15/l01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059079535
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physreve.70.041907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060732025
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physreve.75.041101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060735777
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physreve.84.051911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030688101
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevlett.106.248102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034631447
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevlett.95.260603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018221105
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1126/science.1137455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003120723
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1126/science.1161427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035988238
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1126/science.1242975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010138596
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1137/1.9780898718232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555812
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1137/120897262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870053
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1142/s0219493708002469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062995112
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1142/s0219493715500045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062995321
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1146/annurev.biophys.37.032807.125928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038706133
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1152/ajpcell.1998.274.2.c531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083220335
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1214/08-aop412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390127
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1371/journal.pbio.0040309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031857499
256 rdf:type schema:CreativeWork
257 https://www.grid.ac/institutes/grid.33199.31 schema:alternateName Huazhong University of Science and Technology
258 schema:name Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.
259 School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China.
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.442758.8 schema:alternateName University of Cape Verde
262 schema:name Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.
263 Department of Science and Technology, University of Cape Verde, Praia 7600, Cape Verde.
264 School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China.
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.62813.3e schema:alternateName Illinois Institute of Technology
267 schema:name Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.
268 Department of Applied Mathematics, Illinois Institute of Technology,312-567-5335, Chicago 60616, USA.
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.7468.d schema:alternateName Humboldt University of Berlin
271 schema:name Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.
272 Department of Physics, Humboldt University of Berlin, Newtonstrate 15, 12489 Berlin, Germany.
273 Research Domain on Transdisciplinary Concepts and Methods, Potsdam Institute for Climate Impact Research, PO Box 60 12 03, 14412 Potsdam, Germany.
274 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...