Shear-banding Induced Indentation Size Effect in Metallic Glasses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06-21

AUTHORS

Y. M. Lu, B. A. Sun, L. Z. Zhao, W. H. Wang, M. X. Pan, C. T. Liu, Y. Yang

ABSTRACT

Shear-banding is commonly regarded as the "plasticity carrier" of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a "distributed" fashion to a "localized" mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs. More... »

PAGES

28523

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep28523

DOI

http://dx.doi.org/10.1038/srep28523

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032592429

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27324835


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, P.R. China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China", 
            "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Y. M.", 
        "id": "sg:person.012414626401.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012414626401.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, P.R. China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "B. A.", 
        "id": "sg:person.016250700645.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250700645.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "L. Z.", 
        "id": "sg:person.015716231205.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015716231205.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "W. H.", 
        "id": "sg:person.01363714371.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "M. X.", 
        "id": "sg:person.014715106052.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014715106052.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, P.R. China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "C. T.", 
        "id": "sg:person.011275665477.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275665477.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, P.R. China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Y.", 
        "id": "sg:person.011030777611.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030777611.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11837-010-0052-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026767163", 
          "https://doi.org/10.1007/s11837-010-0052-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053179545", 
          "https://doi.org/10.1038/srep01096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2002.0254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049347643", 
          "https://doi.org/10.1557/jmr.2002.0254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049615186", 
          "https://doi.org/10.1038/ncomms11516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017749130", 
          "https://doi.org/10.1038/ncomms6823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037157089", 
          "https://doi.org/10.1038/nature06598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/asiamat.2011.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036467624", 
          "https://doi.org/10.1038/asiamat.2011.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022408182", 
          "https://doi.org/10.1038/nmat2622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018290838", 
          "https://doi.org/10.1038/nature07718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039285401", 
          "https://doi.org/10.1038/ncomms8043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037768270", 
          "https://doi.org/10.1038/ncomms2546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015129591", 
          "https://doi.org/10.1038/srep06699"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06-21", 
    "datePublishedReg": "2016-06-21", 
    "description": "Shear-banding is commonly regarded as the \"plasticity carrier\" of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a \"distributed\" fashion to a \"localized\" mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep28523", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6994665", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "indentation size effect", 
      "metallic glasses", 
      "critical length scale", 
      "pronounced indentation size effect", 
      "severe strain localization", 
      "size effect", 
      "dynamic nanoindentation technique", 
      "length scales", 
      "nanoindentation technique", 
      "plastic flow", 
      "catastrophic failure", 
      "strain localization", 
      "plasticity carriers", 
      "glass", 
      "transition mechanism", 
      "flow", 
      "elasticity", 
      "quantitative insights", 
      "mode", 
      "effect", 
      "technique", 
      "intrinsic interplay", 
      "carriers", 
      "scale", 
      "failure", 
      "vanishes", 
      "evolves", 
      "transition", 
      "plasticity", 
      "use", 
      "mechanism", 
      "fragility", 
      "localization", 
      "variety", 
      "insights", 
      "interplay", 
      "fashion", 
      "current findings", 
      "findings", 
      "high-throughput dynamic nanoindentation technique", 
      "different MGs evolves", 
      "MGs evolves", 
      "resultant plastic flow", 
      "variety of MGs", 
      "nanoscale plasticity transition", 
      "plasticity transition", 
      "nano-scale plasticity", 
      "Shear-banding Induced Indentation Size Effect", 
      "Induced Indentation Size Effect"
    ], 
    "name": "Shear-banding Induced Indentation Size Effect in Metallic Glasses", 
    "pagination": "28523", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032592429"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep28523"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27324835"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep28523", 
      "https://app.dimensions.ai/details/publication/pub.1032592429"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_718.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep28523"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep28523'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep28523'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep28523'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep28523'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      22 PREDICATES      87 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep28523 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nfd88d10b8ff14d578014908260129158
4 schema:citation sg:pub.10.1007/s11837-010-0052-4
5 sg:pub.10.1038/asiamat.2011.30
6 sg:pub.10.1038/nature06598
7 sg:pub.10.1038/nature07718
8 sg:pub.10.1038/ncomms11516
9 sg:pub.10.1038/ncomms2546
10 sg:pub.10.1038/ncomms6823
11 sg:pub.10.1038/ncomms8043
12 sg:pub.10.1038/nmat2622
13 sg:pub.10.1038/srep01096
14 sg:pub.10.1038/srep06699
15 sg:pub.10.1557/jmr.2002.0254
16 schema:datePublished 2016-06-21
17 schema:datePublishedReg 2016-06-21
18 schema:description Shear-banding is commonly regarded as the "plasticity carrier" of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a "distributed" fashion to a "localized" mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N4dd2b8a3154e4b51a2bd61bbe247630b
23 Nc96d82ba35324c478fac1ff0ebf20c5b
24 sg:journal.1045337
25 schema:keywords Induced Indentation Size Effect
26 MGs evolves
27 Shear-banding Induced Indentation Size Effect
28 carriers
29 catastrophic failure
30 critical length scale
31 current findings
32 different MGs evolves
33 dynamic nanoindentation technique
34 effect
35 elasticity
36 evolves
37 failure
38 fashion
39 findings
40 flow
41 fragility
42 glass
43 high-throughput dynamic nanoindentation technique
44 indentation size effect
45 insights
46 interplay
47 intrinsic interplay
48 length scales
49 localization
50 mechanism
51 metallic glasses
52 mode
53 nano-scale plasticity
54 nanoindentation technique
55 nanoscale plasticity transition
56 plastic flow
57 plasticity
58 plasticity carriers
59 plasticity transition
60 pronounced indentation size effect
61 quantitative insights
62 resultant plastic flow
63 scale
64 severe strain localization
65 size effect
66 strain localization
67 technique
68 transition
69 transition mechanism
70 use
71 vanishes
72 variety
73 variety of MGs
74 schema:name Shear-banding Induced Indentation Size Effect in Metallic Glasses
75 schema:pagination 28523
76 schema:productId N2c7aabf1d1f7407a83708cfdd0fe4d10
77 N53ddac1a1388414c97cc92e9b2861333
78 N8846b19ce6f44415b3c3b89fd5e1cfd8
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032592429
80 https://doi.org/10.1038/srep28523
81 schema:sdDatePublished 2021-12-01T19:37
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N0c0f6e273df1474d97222444f1ab6800
84 schema:url https://doi.org/10.1038/srep28523
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N0c0f6e273df1474d97222444f1ab6800 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N229c9cdabb6a401ead734c56c06120f3 rdf:first sg:person.011030777611.68
91 rdf:rest rdf:nil
92 N2c7aabf1d1f7407a83708cfdd0fe4d10 schema:name pubmed_id
93 schema:value 27324835
94 rdf:type schema:PropertyValue
95 N43cae7928bb548068d505761a1ab4ef8 rdf:first sg:person.011275665477.02
96 rdf:rest N229c9cdabb6a401ead734c56c06120f3
97 N4dd2b8a3154e4b51a2bd61bbe247630b schema:volumeNumber 6
98 rdf:type schema:PublicationVolume
99 N51e59ac3499b4e3eb14c42c97d60832a rdf:first sg:person.015716231205.19
100 rdf:rest N6fcb04b9ab3245af94e5b08d08a36dca
101 N51efb8f3baad46629dbe4cf56270fab2 rdf:first sg:person.016250700645.65
102 rdf:rest N51e59ac3499b4e3eb14c42c97d60832a
103 N53ddac1a1388414c97cc92e9b2861333 schema:name dimensions_id
104 schema:value pub.1032592429
105 rdf:type schema:PropertyValue
106 N6fcb04b9ab3245af94e5b08d08a36dca rdf:first sg:person.01363714371.28
107 rdf:rest Ncde12c19409a496f8d192c6a12138a40
108 N8846b19ce6f44415b3c3b89fd5e1cfd8 schema:name doi
109 schema:value 10.1038/srep28523
110 rdf:type schema:PropertyValue
111 Nc96d82ba35324c478fac1ff0ebf20c5b schema:issueNumber 1
112 rdf:type schema:PublicationIssue
113 Ncde12c19409a496f8d192c6a12138a40 rdf:first sg:person.014715106052.19
114 rdf:rest N43cae7928bb548068d505761a1ab4ef8
115 Nfd88d10b8ff14d578014908260129158 rdf:first sg:person.012414626401.11
116 rdf:rest N51efb8f3baad46629dbe4cf56270fab2
117 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
118 schema:name Engineering
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
121 schema:name Materials Engineering
122 rdf:type schema:DefinedTerm
123 sg:grant.6994665 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28523
124 rdf:type schema:MonetaryGrant
125 sg:journal.1045337 schema:issn 2045-2322
126 schema:name Scientific Reports
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.011030777611.68 schema:affiliation grid-institutes:None
130 schema:familyName Yang
131 schema:givenName Y.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030777611.68
133 rdf:type schema:Person
134 sg:person.011275665477.02 schema:affiliation grid-institutes:None
135 schema:familyName Liu
136 schema:givenName C. T.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275665477.02
138 rdf:type schema:Person
139 sg:person.012414626401.11 schema:affiliation grid-institutes:None
140 schema:familyName Lu
141 schema:givenName Y. M.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012414626401.11
143 rdf:type schema:Person
144 sg:person.01363714371.28 schema:affiliation grid-institutes:grid.458438.6
145 schema:familyName Wang
146 schema:givenName W. H.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28
148 rdf:type schema:Person
149 sg:person.014715106052.19 schema:affiliation grid-institutes:grid.458438.6
150 schema:familyName Pan
151 schema:givenName M. X.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014715106052.19
153 rdf:type schema:Person
154 sg:person.015716231205.19 schema:affiliation grid-institutes:grid.458438.6
155 schema:familyName Zhao
156 schema:givenName L. Z.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015716231205.19
158 rdf:type schema:Person
159 sg:person.016250700645.65 schema:affiliation grid-institutes:None
160 schema:familyName Sun
161 schema:givenName B. A.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250700645.65
163 rdf:type schema:Person
164 sg:pub.10.1007/s11837-010-0052-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026767163
165 https://doi.org/10.1007/s11837-010-0052-4
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/asiamat.2011.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036467624
168 https://doi.org/10.1038/asiamat.2011.30
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature06598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037157089
171 https://doi.org/10.1038/nature06598
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nature07718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018290838
174 https://doi.org/10.1038/nature07718
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ncomms11516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049615186
177 https://doi.org/10.1038/ncomms11516
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ncomms2546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037768270
180 https://doi.org/10.1038/ncomms2546
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ncomms6823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017749130
183 https://doi.org/10.1038/ncomms6823
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ncomms8043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039285401
186 https://doi.org/10.1038/ncomms8043
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nmat2622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022408182
189 https://doi.org/10.1038/nmat2622
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/srep01096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053179545
192 https://doi.org/10.1038/srep01096
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/srep06699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015129591
195 https://doi.org/10.1038/srep06699
196 rdf:type schema:CreativeWork
197 sg:pub.10.1557/jmr.2002.0254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049347643
198 https://doi.org/10.1557/jmr.2002.0254
199 rdf:type schema:CreativeWork
200 grid-institutes:None schema:alternateName Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, P.R. China
201 schema:name Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, P.R. China
202 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China
203 rdf:type schema:Organization
204 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China
205 schema:name Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...