Rare coding TTN variants are associated with electrocardiographic QT interval in the general population View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09

AUTHORS

Ashish Kapoor, Kiranmayee Bakshy, Linda Xu, Priyanka Nandakumar, Dongwon Lee, Eric Boerwinkle, Megan L Grove, Dan E Arking, Aravinda Chakravarti

ABSTRACT

We have shown previously that noncoding variants mapping around a specific set of 170 genes encoding cardiomyocyte intercalated disc (ID) proteins are more enriched for associations with QT interval than observed for genome-wide comparisons. At a false discovery rate (FDR) of 5%, we had identified 28 such ID protein-encoding genes. Here, we assessed whether coding variants at these 28 genes affect QT interval in the general population as well. We used exome sequencing in 4,469 European American (EA) and 1,880 African American (AA) ancestry individuals from the population-based ARIC (Atherosclerosis Risk In Communities) Study cohort to focus on rare (allele frequency <1%) potentially deleterious (nonsynonymous, stop-gain, splice) variants (n = 2,398 for EA; n = 1,693 for AA) and tested their effects on standardized QT interval residuals. We identified 27 nonsynonymous variants associated with QT interval (FDR 5%), 22 of which were in TTN. Taken together with the mapping of a QT interval GWAS locus near TTN, our observation of rare deleterious coding variants in TTN associated with QT interval show that TTN plays a role in regulation of cardiac electrical conductance and coupling, and is a risk factor for cardiac arrhythmias and sudden cardiac death. More... »

PAGES

28356

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep28356

DOI

http://dx.doi.org/10.1038/srep28356

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001454971

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27321809


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "African Americans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "African Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arrhythmias, Cardiac", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atherosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Connectin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Death, Sudden, Cardiac", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Conductivity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "European Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Deletion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocytes, Cardiac", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kapoor", 
        "givenName": "Ashish", 
        "id": "sg:person.01311664112.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311664112.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakshy", 
        "givenName": "Kiranmayee", 
        "id": "sg:person.01260371205.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260371205.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Linda", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nandakumar", 
        "givenName": "Priyanka", 
        "id": "sg:person.01300772372.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300772372.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dongwon", 
        "id": "sg:person.0650616432.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650616432.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Health Science Center at Houston", 
          "id": "https://www.grid.ac/institutes/grid.267308.8", 
          "name": [
            "Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, 77030, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boerwinkle", 
        "givenName": "Eric", 
        "id": "sg:person.01104262534.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104262534.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Health Science Center at Houston", 
          "id": "https://www.grid.ac/institutes/grid.267308.8", 
          "name": [
            "Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, 77030, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grove", 
        "givenName": "Megan L", 
        "id": "sg:person.0654121465.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654121465.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arking", 
        "givenName": "Dan E", 
        "id": "sg:person.01304013052.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304013052.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakravarti", 
        "givenName": "Aravinda", 
        "id": "sg:person.01221734637.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221734637.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng.362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000758075", 
          "https://doi.org/10.1038/ng.362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/clc.4960191209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001288471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004633015", 
          "https://doi.org/10.1038/ng.3014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005421678", 
          "https://doi.org/10.1038/ng.364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmedgenet-2014-102591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006804104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0410-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007489634", 
          "https://doi.org/10.1038/nmeth0410-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0410-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007489634", 
          "https://doi.org/10.1038/nmeth0410-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0736(94)80052-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012326872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.176601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014452737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gm461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015036269", 
          "https://doi.org/10.1186/gm461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2014.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018906353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1196/annals.1302.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019768427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1542-474x.1997.tb00325.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020338179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020792304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.108.829747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023385733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.108.829747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023385733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024961899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.110.005405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025722528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028039120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2003.09.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028684063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp0808934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034119584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0736(98)90132-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039776865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040312195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040389049", 
          "https://doi.org/10.1038/ng1790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040389049", 
          "https://doi.org/10.1038/ng1790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.hrthm.2004.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047043096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.097857.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047484720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050625874", 
          "https://doi.org/10.1038/nrg2779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050625874", 
          "https://doi.org/10.1038/nrg2779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a115184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059958072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5281.1516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062554106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3010134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062688523"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "We have shown previously that noncoding variants mapping around a specific set of 170 genes encoding cardiomyocyte intercalated disc (ID) proteins are more enriched for associations with QT interval than observed for genome-wide comparisons. At a false discovery rate (FDR) of 5%, we had identified 28 such ID protein-encoding genes. Here, we assessed whether coding variants at these 28 genes affect QT interval in the general population as well. We used exome sequencing in 4,469 European American (EA) and 1,880 African American (AA) ancestry individuals from the population-based ARIC (Atherosclerosis Risk In Communities) Study cohort to focus on rare (allele frequency <1%) potentially deleterious (nonsynonymous, stop-gain, splice) variants (n\u2009=\u20092,398 for EA; n\u2009=\u20091,693 for AA) and tested their effects on standardized QT interval residuals. We identified 27 nonsynonymous variants associated with QT interval (FDR 5%), 22 of which were in TTN. Taken together with the mapping of a QT interval GWAS locus near TTN, our observation of rare deleterious coding variants in TTN associated with QT interval show that TTN plays a role in regulation of cardiac electrical conductance and coupling, and is a risk factor for cardiac arrhythmias and sudden cardiac death.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep28356", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2345504", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2669432", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2541398", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345491", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3805930", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2536122", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345497", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345522", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345526", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2541272", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4244365", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2699330", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345564", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345510", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345516", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Rare coding TTN variants are associated with electrocardiographic QT interval in the general population", 
    "pagination": "28356", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "06ee54cb6aded3bc879cc9b0cb9a7731cef6ecb6f62ff0780b744cf6d007f51f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27321809"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep28356"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001454971"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep28356", 
      "https://app.dimensions.ai/details/publication/pub.1001454971"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2016/160620/srep28356/full/srep28356.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep28356'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep28356'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep28356'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep28356'


 

This table displays all metadata directly associated to this object as RDF triples.

354 TRIPLES      21 PREDICATES      84 URIs      45 LITERALS      33 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep28356 schema:about N070c929fc19e47abaa5a790af0ff4a23
2 N09152ec86a2f4c8dbf20cc19449a707d
3 N0f1ce981464a43a0b44b0bd5c61d1924
4 N11f03377410e47909fdbbde8ff8fbba0
5 N1445afb0816d4701a067bad14d191d53
6 N2e9664a5aaf34e9ab0234b66b811812b
7 N364ce3967ae44c7598ba4c250a889101
8 N4d3733025e0f4841911e2af9f581dab7
9 N676bd8034dfd41149ab3c4e573c31ee9
10 N7237f18a03b34920ac4298df378f827d
11 N76b2e54a99944c93ab308162dac16762
12 N7a07a5a117b84601a11ac7d443df50e5
13 N84fe4b27d25d4c11af5e64a1d015a80d
14 N85351772d4264963b95c1875a0513b86
15 N876061e854d340fe927c8ca17b3660b9
16 N89c3c15fccee45e880ae1370a0a0b859
17 Nb445bfbbbfac4e5bace40dadd56fafdd
18 Nd32d32dc0182412780aa6897223eb79d
19 Nd5cbb377be1a4fbfa7c5d6db640fb242
20 Ndc554a0626fe4da7b80ea6b8200b8228
21 Ndcc9a17b10d24d0d826ac9f93fb0d2a6
22 Ne478e3d4c04246fcbb52e21904f8dfbf
23 Ne5e6d0dac6fb46459b42306d40de7be8
24 Need7d3878f8f4beebfbf2e58b8eb8cd7
25 anzsrc-for:06
26 anzsrc-for:0604
27 schema:author N2d2078dad00349048013cd74ba2c9a9f
28 schema:citation sg:pub.10.1038/nature08494
29 sg:pub.10.1038/ng.3014
30 sg:pub.10.1038/ng.362
31 sg:pub.10.1038/ng.364
32 sg:pub.10.1038/ng1790
33 sg:pub.10.1038/ng1847
34 sg:pub.10.1038/nmeth0410-248
35 sg:pub.10.1038/nrg2779
36 sg:pub.10.1186/gm461
37 https://doi.org/10.1002/clc.4960191209
38 https://doi.org/10.1016/j.ajhg.2014.05.001
39 https://doi.org/10.1016/j.hrthm.2004.11.009
40 https://doi.org/10.1016/j.jacc.2003.09.040
41 https://doi.org/10.1016/s0022-0736(94)80052-9
42 https://doi.org/10.1016/s0022-0736(98)90132-7
43 https://doi.org/10.1056/nejmp0808934
44 https://doi.org/10.1086/519795
45 https://doi.org/10.1093/nar/gkh103
46 https://doi.org/10.1093/nar/gkn892
47 https://doi.org/10.1093/nar/gkq603
48 https://doi.org/10.1093/nar/gkt1114
49 https://doi.org/10.1093/oxfordjournals.aje.a115184
50 https://doi.org/10.1101/gr.097857.109
51 https://doi.org/10.1101/gr.176601
52 https://doi.org/10.1111/j.1542-474x.1997.tb00325.x
53 https://doi.org/10.1126/science.273.5281.1516
54 https://doi.org/10.1126/scitranslmed.3010134
55 https://doi.org/10.1136/jmedgenet-2014-102591
56 https://doi.org/10.1161/circgenetics.108.829747
57 https://doi.org/10.1161/circulationaha.110.005405
58 https://doi.org/10.1196/annals.1302.008
59 schema:datePublished 2016-09
60 schema:datePublishedReg 2016-09-01
61 schema:description We have shown previously that noncoding variants mapping around a specific set of 170 genes encoding cardiomyocyte intercalated disc (ID) proteins are more enriched for associations with QT interval than observed for genome-wide comparisons. At a false discovery rate (FDR) of 5%, we had identified 28 such ID protein-encoding genes. Here, we assessed whether coding variants at these 28 genes affect QT interval in the general population as well. We used exome sequencing in 4,469 European American (EA) and 1,880 African American (AA) ancestry individuals from the population-based ARIC (Atherosclerosis Risk In Communities) Study cohort to focus on rare (allele frequency <1%) potentially deleterious (nonsynonymous, stop-gain, splice) variants (n = 2,398 for EA; n = 1,693 for AA) and tested their effects on standardized QT interval residuals. We identified 27 nonsynonymous variants associated with QT interval (FDR 5%), 22 of which were in TTN. Taken together with the mapping of a QT interval GWAS locus near TTN, our observation of rare deleterious coding variants in TTN associated with QT interval show that TTN plays a role in regulation of cardiac electrical conductance and coupling, and is a risk factor for cardiac arrhythmias and sudden cardiac death.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree true
65 schema:isPartOf N0fc55cdef22341cab681dc71fc809e00
66 N5e7e7e11d13b495db941eff0ce6055ba
67 sg:journal.1045337
68 schema:name Rare coding TTN variants are associated with electrocardiographic QT interval in the general population
69 schema:pagination 28356
70 schema:productId N4d07a067ac904a2ab863ef90a0df0c98
71 N6a77fda4938a49fb851180cf31e2d004
72 Na084aad429374884ac44ee4930ebc84a
73 Nc01b233982924162acfcb04d8634a0e4
74 Ndd1ace309d024d11a58899a39711fc89
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001454971
76 https://doi.org/10.1038/srep28356
77 schema:sdDatePublished 2019-04-10T19:15
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Nd2cbed73a136413b8b8a7e168e19e7ac
80 schema:url http://www.nature.com/srep/2016/160620/srep28356/full/srep28356.html
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N070c929fc19e47abaa5a790af0ff4a23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name African Continental Ancestry Group
86 rdf:type schema:DefinedTerm
87 N09152ec86a2f4c8dbf20cc19449a707d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Sequence Analysis, DNA
89 rdf:type schema:DefinedTerm
90 N0f1ce981464a43a0b44b0bd5c61d1924 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Alleles
92 rdf:type schema:DefinedTerm
93 N0fc55cdef22341cab681dc71fc809e00 schema:volumeNumber 6
94 rdf:type schema:PublicationVolume
95 N11f03377410e47909fdbbde8ff8fbba0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name United States
97 rdf:type schema:DefinedTerm
98 N1445afb0816d4701a067bad14d191d53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Electrocardiography
100 rdf:type schema:DefinedTerm
101 N2d2078dad00349048013cd74ba2c9a9f rdf:first sg:person.01311664112.61
102 rdf:rest Nab667843cb9a46478e3f01690b722f5c
103 N2e9664a5aaf34e9ab0234b66b811812b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Risk Factors
105 rdf:type schema:DefinedTerm
106 N364ce3967ae44c7598ba4c250a889101 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name European Continental Ancestry Group
108 rdf:type schema:DefinedTerm
109 N402cff26a46344ab8d4d1ea6269f6b5c rdf:first sg:person.0650616432.14
110 rdf:rest Nf63c02c5d7c04bae83145b24f3f1a76d
111 N4d07a067ac904a2ab863ef90a0df0c98 schema:name readcube_id
112 schema:value 06ee54cb6aded3bc879cc9b0cb9a7731cef6ecb6f62ff0780b744cf6d007f51f
113 rdf:type schema:PropertyValue
114 N4d3733025e0f4841911e2af9f581dab7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Prospective Studies
116 rdf:type schema:DefinedTerm
117 N5e7e7e11d13b495db941eff0ce6055ba schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 N676bd8034dfd41149ab3c4e573c31ee9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name African Americans
121 rdf:type schema:DefinedTerm
122 N6a77fda4938a49fb851180cf31e2d004 schema:name doi
123 schema:value 10.1038/srep28356
124 rdf:type schema:PropertyValue
125 N7237f18a03b34920ac4298df378f827d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Middle Aged
127 rdf:type schema:DefinedTerm
128 N76b2e54a99944c93ab308162dac16762 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Connectin
130 rdf:type schema:DefinedTerm
131 N7a07a5a117b84601a11ac7d443df50e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Humans
133 rdf:type schema:DefinedTerm
134 N810d0d68ac484eed91d4c6c2b9c31f86 rdf:first sg:person.01300772372.22
135 rdf:rest N402cff26a46344ab8d4d1ea6269f6b5c
136 N84fe4b27d25d4c11af5e64a1d015a80d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Female
138 rdf:type schema:DefinedTerm
139 N85351772d4264963b95c1875a0513b86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Gene Deletion
141 rdf:type schema:DefinedTerm
142 N876061e854d340fe927c8ca17b3660b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Arrhythmias, Cardiac
144 rdf:type schema:DefinedTerm
145 N89c3c15fccee45e880ae1370a0a0b859 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Myocytes, Cardiac
147 rdf:type schema:DefinedTerm
148 N8f2e125dfa884877b1382f23cd7579b6 rdf:first sg:person.01304013052.15
149 rdf:rest Nde70000165ee4b6ea3be30d13930f9d3
150 Na084aad429374884ac44ee4930ebc84a schema:name pubmed_id
151 schema:value 27321809
152 rdf:type schema:PropertyValue
153 Na701b0295df34b7e88f0851d93d88dc9 rdf:first Nbaaeeadf7a9c483f8782741c7c0d3158
154 rdf:rest N810d0d68ac484eed91d4c6c2b9c31f86
155 Nab667843cb9a46478e3f01690b722f5c rdf:first sg:person.01260371205.31
156 rdf:rest Na701b0295df34b7e88f0851d93d88dc9
157 Nb445bfbbbfac4e5bace40dadd56fafdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Electric Conductivity
159 rdf:type schema:DefinedTerm
160 Nbaaeeadf7a9c483f8782741c7c0d3158 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
161 schema:familyName Xu
162 schema:givenName Linda
163 rdf:type schema:Person
164 Nc01b233982924162acfcb04d8634a0e4 schema:name nlm_unique_id
165 schema:value 101563288
166 rdf:type schema:PropertyValue
167 Nd0a3d2b7c33848898ac6746e3149b389 rdf:first sg:person.0654121465.06
168 rdf:rest N8f2e125dfa884877b1382f23cd7579b6
169 Nd2cbed73a136413b8b8a7e168e19e7ac schema:name Springer Nature - SN SciGraph project
170 rdf:type schema:Organization
171 Nd32d32dc0182412780aa6897223eb79d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Polymorphism, Single Nucleotide
173 rdf:type schema:DefinedTerm
174 Nd5cbb377be1a4fbfa7c5d6db640fb242 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Atherosclerosis
176 rdf:type schema:DefinedTerm
177 Ndc554a0626fe4da7b80ea6b8200b8228 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Genotype
179 rdf:type schema:DefinedTerm
180 Ndcc9a17b10d24d0d826ac9f93fb0d2a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Gene Frequency
182 rdf:type schema:DefinedTerm
183 Ndd1ace309d024d11a58899a39711fc89 schema:name dimensions_id
184 schema:value pub.1001454971
185 rdf:type schema:PropertyValue
186 Nde70000165ee4b6ea3be30d13930f9d3 rdf:first sg:person.01221734637.59
187 rdf:rest rdf:nil
188 Ne478e3d4c04246fcbb52e21904f8dfbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Chromosome Mapping
190 rdf:type schema:DefinedTerm
191 Ne5e6d0dac6fb46459b42306d40de7be8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Death, Sudden, Cardiac
193 rdf:type schema:DefinedTerm
194 Need7d3878f8f4beebfbf2e58b8eb8cd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Male
196 rdf:type schema:DefinedTerm
197 Nf63c02c5d7c04bae83145b24f3f1a76d rdf:first sg:person.01104262534.26
198 rdf:rest Nd0a3d2b7c33848898ac6746e3149b389
199 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
200 schema:name Biological Sciences
201 rdf:type schema:DefinedTerm
202 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
203 schema:name Genetics
204 rdf:type schema:DefinedTerm
205 sg:grant.2345491 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
206 rdf:type schema:MonetaryGrant
207 sg:grant.2345497 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
208 rdf:type schema:MonetaryGrant
209 sg:grant.2345504 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
210 rdf:type schema:MonetaryGrant
211 sg:grant.2345510 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
212 rdf:type schema:MonetaryGrant
213 sg:grant.2345516 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
214 rdf:type schema:MonetaryGrant
215 sg:grant.2345522 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
216 rdf:type schema:MonetaryGrant
217 sg:grant.2345526 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
218 rdf:type schema:MonetaryGrant
219 sg:grant.2345564 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
220 rdf:type schema:MonetaryGrant
221 sg:grant.2536122 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
222 rdf:type schema:MonetaryGrant
223 sg:grant.2541272 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
224 rdf:type schema:MonetaryGrant
225 sg:grant.2541398 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
226 rdf:type schema:MonetaryGrant
227 sg:grant.2669432 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
228 rdf:type schema:MonetaryGrant
229 sg:grant.2699330 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
230 rdf:type schema:MonetaryGrant
231 sg:grant.3805930 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
232 rdf:type schema:MonetaryGrant
233 sg:grant.4244365 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28356
234 rdf:type schema:MonetaryGrant
235 sg:journal.1045337 schema:issn 2045-2322
236 schema:name Scientific Reports
237 rdf:type schema:Periodical
238 sg:person.01104262534.26 schema:affiliation https://www.grid.ac/institutes/grid.267308.8
239 schema:familyName Boerwinkle
240 schema:givenName Eric
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104262534.26
242 rdf:type schema:Person
243 sg:person.01221734637.59 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
244 schema:familyName Chakravarti
245 schema:givenName Aravinda
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221734637.59
247 rdf:type schema:Person
248 sg:person.01260371205.31 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
249 schema:familyName Bakshy
250 schema:givenName Kiranmayee
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260371205.31
252 rdf:type schema:Person
253 sg:person.01300772372.22 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
254 schema:familyName Nandakumar
255 schema:givenName Priyanka
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300772372.22
257 rdf:type schema:Person
258 sg:person.01304013052.15 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
259 schema:familyName Arking
260 schema:givenName Dan E
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304013052.15
262 rdf:type schema:Person
263 sg:person.01311664112.61 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
264 schema:familyName Kapoor
265 schema:givenName Ashish
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311664112.61
267 rdf:type schema:Person
268 sg:person.0650616432.14 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
269 schema:familyName Lee
270 schema:givenName Dongwon
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650616432.14
272 rdf:type schema:Person
273 sg:person.0654121465.06 schema:affiliation https://www.grid.ac/institutes/grid.267308.8
274 schema:familyName Grove
275 schema:givenName Megan L
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654121465.06
277 rdf:type schema:Person
278 sg:pub.10.1038/nature08494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005147626
279 https://doi.org/10.1038/nature08494
280 rdf:type schema:CreativeWork
281 sg:pub.10.1038/ng.3014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004633015
282 https://doi.org/10.1038/ng.3014
283 rdf:type schema:CreativeWork
284 sg:pub.10.1038/ng.362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000758075
285 https://doi.org/10.1038/ng.362
286 rdf:type schema:CreativeWork
287 sg:pub.10.1038/ng.364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005421678
288 https://doi.org/10.1038/ng.364
289 rdf:type schema:CreativeWork
290 sg:pub.10.1038/ng1790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040389049
291 https://doi.org/10.1038/ng1790
292 rdf:type schema:CreativeWork
293 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
294 https://doi.org/10.1038/ng1847
295 rdf:type schema:CreativeWork
296 sg:pub.10.1038/nmeth0410-248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007489634
297 https://doi.org/10.1038/nmeth0410-248
298 rdf:type schema:CreativeWork
299 sg:pub.10.1038/nrg2779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050625874
300 https://doi.org/10.1038/nrg2779
301 rdf:type schema:CreativeWork
302 sg:pub.10.1186/gm461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015036269
303 https://doi.org/10.1186/gm461
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1002/clc.4960191209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001288471
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1016/j.ajhg.2014.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018906353
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1016/j.hrthm.2004.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047043096
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1016/j.jacc.2003.09.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028684063
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1016/s0022-0736(94)80052-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012326872
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1016/s0022-0736(98)90132-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039776865
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1056/nejmp0808934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034119584
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1093/nar/gkh103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040312195
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1093/nar/gkn892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028039120
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1093/nar/gkq603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020792304
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1093/nar/gkt1114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024961899
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1093/oxfordjournals.aje.a115184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059958072
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1101/gr.097857.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047484720
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1101/gr.176601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014452737
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1111/j.1542-474x.1997.tb00325.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020338179
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1126/science.273.5281.1516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554106
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1126/scitranslmed.3010134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062688523
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1136/jmedgenet-2014-102591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006804104
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1161/circgenetics.108.829747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023385733
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1161/circulationaha.110.005405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025722528
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1196/annals.1302.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019768427
348 rdf:type schema:CreativeWork
349 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
350 schema:name McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
351 rdf:type schema:Organization
352 https://www.grid.ac/institutes/grid.267308.8 schema:alternateName The University of Texas Health Science Center at Houston
353 schema:name Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, 77030, USA.
354 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...