Large enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06-17

AUTHORS

Hyunji An, Jun Young Han, Bongjae Kim, Jaesun Song, Sang Yun Jeong, Cesare Franchini, Chung Wung Bark, Sanghan Lee

ABSTRACT

Tuning the bandgap in ferroelectric complex oxides is a possible route for improving the photovoltaic activity of materials. Here, we report the realization of this effect in epitaxial thin films of the ferroelectric complex oxide Bi3.25La0.75Ti3O12 (BLT) suitably doped by Fe and Co. Our study shows that Co (BLCT) doping and combined Fe, Co (BLFCT) doping lead to a reduction of the bandgap by more than 1 eV compared to undoped BLT, accompanied by a surprisingly more efficient visible light absorption. Both BLCT and BLFCT films can absorb visible light with a wavelength of up to 500 nm while still exhibiting ferroelectricity, whereas undoped BLT only absorbs UV light with a wavelength of less than 350 nm. Correlated with its bandgap reduction, the BLFCT film shows a photocurrent density enhanced by 25 times compared to that of BLT films. Density functional theory calculations indicate that the bandgap contraction is caused by the formation of new energy states below the conduction bands due to intermixed transition metal dopants (Fe, Co) in BLT. This mechanism of tuning the bandgap by simple doping can be applied to other wide-bandgap complex oxides, thereby enabling their use in solar energy conversion or optoelectronic applications. More... »

PAGES

28313

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep28313

DOI

http://dx.doi.org/10.1038/srep28313

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011180871

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27313099


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 61005, Gwangju, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.61221.36", 
          "name": [
            "School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 61005, Gwangju, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Hyunji", 
        "id": "sg:person.01170523647.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170523647.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Gachon University, 13120, Seongnam, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.256155.0", 
          "name": [
            "Department of Electrical Engineering, Gachon University, 13120, Seongnam, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Jun Young", 
        "id": "sg:person.016245670237.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016245670237.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Physics and Center for Computational Materials Science, University of Vienna, A-1090, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Faculty of Physics and Center for Computational Materials Science, University of Vienna, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Bongjae", 
        "id": "sg:person.013074255331.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013074255331.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 61005, Gwangju, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.61221.36", 
          "name": [
            "School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 61005, Gwangju, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Jaesun", 
        "id": "sg:person.01353065447.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353065447.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 61005, Gwangju, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.61221.36", 
          "name": [
            "School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 61005, Gwangju, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeong", 
        "givenName": "Sang Yun", 
        "id": "sg:person.0627461347.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627461347.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Physics and Center for Computational Materials Science, University of Vienna, A-1090, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Faculty of Physics and Center for Computational Materials Science, University of Vienna, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franchini", 
        "givenName": "Cesare", 
        "id": "sg:person.0660045260.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660045260.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Gachon University, 13120, Seongnam, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.256155.0", 
          "name": [
            "Department of Electrical Engineering, Gachon University, 13120, Seongnam, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bark", 
        "givenName": "Chung Wung", 
        "id": "sg:person.0760530121.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760530121.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 61005, Gwangju, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.61221.36", 
          "name": [
            "School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 61005, Gwangju, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sanghan", 
        "id": "sg:person.01241016365.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241016365.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature12622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053357946", 
          "https://doi.org/10.1038/nature12622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011114675", 
          "https://doi.org/10.1038/nnano.2009.451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003390201305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041004313", 
          "https://doi.org/10.1007/s003390201305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028540117", 
          "https://doi.org/10.1038/srep01265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40580-014-0035-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016944917", 
          "https://doi.org/10.1186/s40580-014-0035-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041684953", 
          "https://doi.org/10.1038/ncomms1690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40580-014-0034-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024731741", 
          "https://doi.org/10.1186/s40580-014-0034-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053709972", 
          "https://doi.org/10.1038/nphoton.2014.255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003109039", 
          "https://doi.org/10.1038/44352"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06-17", 
    "datePublishedReg": "2016-06-17", 
    "description": "Tuning the bandgap in ferroelectric complex oxides is a possible route for improving the photovoltaic activity of materials. Here, we report the realization of this effect in epitaxial thin films of the ferroelectric complex oxide Bi3.25La0.75Ti3O12 (BLT) suitably doped by Fe and Co. Our study shows that Co (BLCT) doping and combined Fe, Co (BLFCT) doping lead to a reduction of the bandgap by more than 1\u2009eV compared to undoped BLT, accompanied by a surprisingly more efficient visible light absorption. Both BLCT and BLFCT films can absorb visible light with a wavelength of up to 500\u2009nm while still exhibiting ferroelectricity, whereas undoped BLT only absorbs UV light with a wavelength of less than 350\u2009nm. Correlated with its bandgap reduction, the BLFCT film shows a photocurrent density enhanced by 25 times compared to that of BLT films. Density functional theory calculations indicate that the bandgap contraction is caused by the formation of new energy states below the conduction bands due to intermixed transition metal dopants (Fe, Co) in BLT. This mechanism of tuning the bandgap by simple doping can be applied to other wide-bandgap complex oxides, thereby enabling their use in solar energy conversion or optoelectronic applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep28313", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6208415", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "ferroelectric complex oxides", 
      "complex oxides", 
      "bandgap reduction", 
      "efficient visible light absorption", 
      "density functional theory calculations", 
      "new energy states", 
      "epitaxial thin films", 
      "visible light absorption", 
      "functional theory calculations", 
      "transition metal dopants", 
      "solar energy conversion", 
      "optoelectronic applications", 
      "conduction band", 
      "photovoltaic effect", 
      "simple doping", 
      "metal dopants", 
      "photovoltaic activity", 
      "light absorption", 
      "photocurrent density", 
      "theory calculations", 
      "thin films", 
      "visible light", 
      "energy states", 
      "large enhancement", 
      "bandgap", 
      "Co doping", 
      "energy conversion", 
      "BLT films", 
      "UV light", 
      "wavelength", 
      "films", 
      "oxide", 
      "doping", 
      "CO", 
      "possible routes", 
      "Fe", 
      "light", 
      "eV", 
      "ferroelectricity", 
      "BLT", 
      "dopants", 
      "absorption", 
      "calculations", 
      "BLCT", 
      "band", 
      "conversion", 
      "route", 
      "realization", 
      "density", 
      "materials", 
      "formation", 
      "reduction", 
      "state", 
      "enhancement", 
      "applications", 
      "lead", 
      "effect", 
      "activity", 
      "mechanism", 
      "time", 
      "use", 
      "study", 
      "contraction"
    ], 
    "name": "Large enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction", 
    "pagination": "28313", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011180871"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep28313"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27313099"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep28313", 
      "https://app.dimensions.ai/details/publication/pub.1011180871"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_693.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep28313"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep28313'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep28313'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep28313'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep28313'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      22 PREDICATES      100 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep28313 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author Nd8c5691613e447c5b214230cc77e330d
6 schema:citation sg:pub.10.1007/s003390201305
7 sg:pub.10.1038/44352
8 sg:pub.10.1038/nature12622
9 sg:pub.10.1038/ncomms1690
10 sg:pub.10.1038/nnano.2009.451
11 sg:pub.10.1038/nphoton.2014.255
12 sg:pub.10.1038/srep01265
13 sg:pub.10.1186/s40580-014-0034-2
14 sg:pub.10.1186/s40580-014-0035-1
15 schema:datePublished 2016-06-17
16 schema:datePublishedReg 2016-06-17
17 schema:description Tuning the bandgap in ferroelectric complex oxides is a possible route for improving the photovoltaic activity of materials. Here, we report the realization of this effect in epitaxial thin films of the ferroelectric complex oxide Bi3.25La0.75Ti3O12 (BLT) suitably doped by Fe and Co. Our study shows that Co (BLCT) doping and combined Fe, Co (BLFCT) doping lead to a reduction of the bandgap by more than 1 eV compared to undoped BLT, accompanied by a surprisingly more efficient visible light absorption. Both BLCT and BLFCT films can absorb visible light with a wavelength of up to 500 nm while still exhibiting ferroelectricity, whereas undoped BLT only absorbs UV light with a wavelength of less than 350 nm. Correlated with its bandgap reduction, the BLFCT film shows a photocurrent density enhanced by 25 times compared to that of BLT films. Density functional theory calculations indicate that the bandgap contraction is caused by the formation of new energy states below the conduction bands due to intermixed transition metal dopants (Fe, Co) in BLT. This mechanism of tuning the bandgap by simple doping can be applied to other wide-bandgap complex oxides, thereby enabling their use in solar energy conversion or optoelectronic applications.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N0d91a14af4be481db4f0bbd6ee2748ea
22 N61ad2cff938a441d98ff7dae4f3ae5af
23 sg:journal.1045337
24 schema:keywords BLCT
25 BLT
26 BLT films
27 CO
28 Co doping
29 Fe
30 UV light
31 absorption
32 activity
33 applications
34 band
35 bandgap
36 bandgap reduction
37 calculations
38 complex oxides
39 conduction band
40 contraction
41 conversion
42 density
43 density functional theory calculations
44 dopants
45 doping
46 eV
47 effect
48 efficient visible light absorption
49 energy conversion
50 energy states
51 enhancement
52 epitaxial thin films
53 ferroelectric complex oxides
54 ferroelectricity
55 films
56 formation
57 functional theory calculations
58 large enhancement
59 lead
60 light
61 light absorption
62 materials
63 mechanism
64 metal dopants
65 new energy states
66 optoelectronic applications
67 oxide
68 photocurrent density
69 photovoltaic activity
70 photovoltaic effect
71 possible routes
72 realization
73 reduction
74 route
75 simple doping
76 solar energy conversion
77 state
78 study
79 theory calculations
80 thin films
81 time
82 transition metal dopants
83 use
84 visible light
85 visible light absorption
86 wavelength
87 schema:name Large enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction
88 schema:pagination 28313
89 schema:productId N280eef3b5bc94620bd68ef8e4019f78f
90 N71f6340169cb464c94181e3c733eccde
91 Nb2d10d864d7b48ebaaf20c90bbae0b23
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011180871
93 https://doi.org/10.1038/srep28313
94 schema:sdDatePublished 2022-05-20T07:31
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Ncacf09dc98a94ad4a7cbad705f4ace19
97 schema:url https://doi.org/10.1038/srep28313
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N01105076dad7415a87118d0c5b63ec35 rdf:first sg:person.016245670237.87
102 rdf:rest Ncddf6d43f806442f8cdf727118f750b8
103 N0d91a14af4be481db4f0bbd6ee2748ea schema:volumeNumber 6
104 rdf:type schema:PublicationVolume
105 N2222d59107f74cbaa8da28395273ad01 rdf:first sg:person.0660045260.01
106 rdf:rest Naa4ff7f56c954ba1b35733f1a902af94
107 N280eef3b5bc94620bd68ef8e4019f78f schema:name doi
108 schema:value 10.1038/srep28313
109 rdf:type schema:PropertyValue
110 N61ad2cff938a441d98ff7dae4f3ae5af schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 N71f6340169cb464c94181e3c733eccde schema:name pubmed_id
113 schema:value 27313099
114 rdf:type schema:PropertyValue
115 N9721b905cd4641c2a9a3fe2c022320bf rdf:first sg:person.0627461347.39
116 rdf:rest N2222d59107f74cbaa8da28395273ad01
117 Naa4ff7f56c954ba1b35733f1a902af94 rdf:first sg:person.0760530121.16
118 rdf:rest Nb5bbd845e56a466ca84e82a1853d6a54
119 Nb2d10d864d7b48ebaaf20c90bbae0b23 schema:name dimensions_id
120 schema:value pub.1011180871
121 rdf:type schema:PropertyValue
122 Nb5bbd845e56a466ca84e82a1853d6a54 rdf:first sg:person.01241016365.28
123 rdf:rest rdf:nil
124 Ncacf09dc98a94ad4a7cbad705f4ace19 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Ncddf6d43f806442f8cdf727118f750b8 rdf:first sg:person.013074255331.23
127 rdf:rest Nda7eb7dd7f044ab7adbec073a01a8236
128 Nd8c5691613e447c5b214230cc77e330d rdf:first sg:person.01170523647.60
129 rdf:rest N01105076dad7415a87118d0c5b63ec35
130 Nda7eb7dd7f044ab7adbec073a01a8236 rdf:first sg:person.01353065447.31
131 rdf:rest N9721b905cd4641c2a9a3fe2c022320bf
132 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
133 schema:name Chemical Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
136 schema:name Inorganic Chemistry
137 rdf:type schema:DefinedTerm
138 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
139 schema:name Engineering
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
142 schema:name Materials Engineering
143 rdf:type schema:DefinedTerm
144 sg:grant.6208415 http://pending.schema.org/fundedItem sg:pub.10.1038/srep28313
145 rdf:type schema:MonetaryGrant
146 sg:journal.1045337 schema:issn 2045-2322
147 schema:name Scientific Reports
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.01170523647.60 schema:affiliation grid-institutes:grid.61221.36
151 schema:familyName An
152 schema:givenName Hyunji
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170523647.60
154 rdf:type schema:Person
155 sg:person.01241016365.28 schema:affiliation grid-institutes:grid.61221.36
156 schema:familyName Lee
157 schema:givenName Sanghan
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241016365.28
159 rdf:type schema:Person
160 sg:person.013074255331.23 schema:affiliation grid-institutes:grid.10420.37
161 schema:familyName Kim
162 schema:givenName Bongjae
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013074255331.23
164 rdf:type schema:Person
165 sg:person.01353065447.31 schema:affiliation grid-institutes:grid.61221.36
166 schema:familyName Song
167 schema:givenName Jaesun
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353065447.31
169 rdf:type schema:Person
170 sg:person.016245670237.87 schema:affiliation grid-institutes:grid.256155.0
171 schema:familyName Han
172 schema:givenName Jun Young
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016245670237.87
174 rdf:type schema:Person
175 sg:person.0627461347.39 schema:affiliation grid-institutes:grid.61221.36
176 schema:familyName Jeong
177 schema:givenName Sang Yun
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627461347.39
179 rdf:type schema:Person
180 sg:person.0660045260.01 schema:affiliation grid-institutes:grid.10420.37
181 schema:familyName Franchini
182 schema:givenName Cesare
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660045260.01
184 rdf:type schema:Person
185 sg:person.0760530121.16 schema:affiliation grid-institutes:grid.256155.0
186 schema:familyName Bark
187 schema:givenName Chung Wung
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760530121.16
189 rdf:type schema:Person
190 sg:pub.10.1007/s003390201305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041004313
191 https://doi.org/10.1007/s003390201305
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/44352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003109039
194 https://doi.org/10.1038/44352
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature12622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053357946
197 https://doi.org/10.1038/nature12622
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/ncomms1690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041684953
200 https://doi.org/10.1038/ncomms1690
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nnano.2009.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011114675
203 https://doi.org/10.1038/nnano.2009.451
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nphoton.2014.255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053709972
206 https://doi.org/10.1038/nphoton.2014.255
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/srep01265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028540117
209 https://doi.org/10.1038/srep01265
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/s40580-014-0034-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024731741
212 https://doi.org/10.1186/s40580-014-0034-2
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/s40580-014-0035-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016944917
215 https://doi.org/10.1186/s40580-014-0035-1
216 rdf:type schema:CreativeWork
217 grid-institutes:grid.10420.37 schema:alternateName Faculty of Physics and Center for Computational Materials Science, University of Vienna, A-1090, Vienna, Austria
218 schema:name Faculty of Physics and Center for Computational Materials Science, University of Vienna, A-1090, Vienna, Austria
219 rdf:type schema:Organization
220 grid-institutes:grid.256155.0 schema:alternateName Department of Electrical Engineering, Gachon University, 13120, Seongnam, South Korea
221 schema:name Department of Electrical Engineering, Gachon University, 13120, Seongnam, South Korea
222 rdf:type schema:Organization
223 grid-institutes:grid.61221.36 schema:alternateName School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 61005, Gwangju, South Korea
224 schema:name School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 61005, Gwangju, South Korea
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...