Effect of experimental laser imperfections on laser wakefield acceleration and betatron source View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09

AUTHORS

J. Ferri, X. Davoine, S. Fourmaux, J. C. Kieffer, S. Corde, K. Ta Phuoc, A. Lifschitz

ABSTRACT

Laser pulses in current ultra-short TW systems are far from being ideal Gaussian beams. The influence of the presence of non-Gaussian features of the laser pulse is investigated here from experiments and 3D Particle-in-Cell simulations. Both the experimental intensity distribution and wavefront are used as input in the simulations. It is shown that a quantitative agreement between experimental data and simulations requires to use realistic pulse features. Moreover, some trends found in the experiments, such as the growing of the X-ray signal with the plasma length, can only be retrieved in simulations with realistic pulses. The performances on the electron acceleration and the synchrotron X-ray emission are strongly degraded by these non-Gaussian features, even keeping constant the total laser energy. A drop on the X-ray photon number by one order of magnitude was found. This clearly put forward the limitation of using a Gaussian beam in the simulations. More... »

PAGES

27846

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep27846

DOI

http://dx.doi.org/10.1038/srep27846

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052125078

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27324915


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "CEA, DAM, DIF, 91297 Arpajon, France", 
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferri", 
        "givenName": "J.", 
        "id": "sg:person.011366571001.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011366571001.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CEA, DAM, DIF, 91297 Arpajon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davoine", 
        "givenName": "X.", 
        "id": "sg:person.01322613222.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322613222.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Quebec", 
          "id": "https://www.grid.ac/institutes/grid.265695.b", 
          "name": [
            "INRS-EMT, Universit\u00e9 du Qu\u00e9bec, 1650 Lionel Boulet, Varennes J3X 1S2, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fourmaux", 
        "givenName": "S.", 
        "id": "sg:person.01033234067.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033234067.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Quebec", 
          "id": "https://www.grid.ac/institutes/grid.265695.b", 
          "name": [
            "INRS-EMT, Universit\u00e9 du Qu\u00e9bec, 1650 Lionel Boulet, Varennes J3X 1S2, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kieffer", 
        "givenName": "J. C.", 
        "id": "sg:person.01053465547.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053465547.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corde", 
        "givenName": "S.", 
        "id": "sg:person.0656710000.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656710000.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Phuoc", 
        "givenName": "K. Ta", 
        "id": "sg:person.01006764764.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006764764.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lifschitz", 
        "givenName": "A.", 
        "id": "sg:person.0755707622.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755707622.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000739651", 
          "https://doi.org/10.1038/nature02939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000739651", 
          "https://doi.org/10.1038/nature02939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005071008", 
          "https://doi.org/10.1038/ncomms2988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005399057", 
          "https://doi.org/10.1038/nature02963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005399057", 
          "https://doi.org/10.1038/nature02963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4903851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006565307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009401380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009401380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevstab.10.061301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015314999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevstab.10.061301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015314999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.245002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019423721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.245002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019423721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0741-3335/54/5/055010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021042596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.095004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022164188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.095004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022164188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3258022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030522619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.165002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031924893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.165002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031924893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4868404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032070351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0741-3335/56/8/084015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034109062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036175440", 
          "https://doi.org/10.1038/ncomms8156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevstab.16.031302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037653591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevstab.16.031302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037653591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/13/3/033017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038165507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042278002", 
          "https://doi.org/10.1038/nature02900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042278002", 
          "https://doi.org/10.1038/nature02900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045050360", 
          "https://doi.org/10.1038/nphys418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045050360", 
          "https://doi.org/10.1038/nphys418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4752114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046419023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049350656", 
          "https://doi.org/10.1038/ncomms2528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0741-3335/51/2/024010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052772263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2436481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057857302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3587111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057979890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3627216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057987837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4810795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058077492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0029-5515/43/7/317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058987160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.085002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.085002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.035001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.035001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.225002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.225002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/113/34002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064227389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.36.002426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065230411"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "Laser pulses in current ultra-short TW systems are far from being ideal Gaussian beams. The influence of the presence of non-Gaussian features of the laser pulse is investigated here from experiments and 3D Particle-in-Cell simulations. Both the experimental intensity distribution and wavefront are used as input in the simulations. It is shown that a quantitative agreement between experimental data and simulations requires to use realistic pulse features. Moreover, some trends found in the experiments, such as the growing of the X-ray signal with the plasma length, can only be retrieved in simulations with realistic pulses. The performances on the electron acceleration and the synchrotron X-ray emission are strongly degraded by these non-Gaussian features, even keeping constant the total laser energy. A drop on the X-ray photon number by one order of magnitude was found. This clearly put forward the limitation of using a Gaussian beam in the simulations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep27846", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Effect of experimental laser imperfections on laser wakefield acceleration and betatron source", 
    "pagination": "27846", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f84a450a904894fad15d2c762b4d85857d9cb9baef1360b93baf7b9513272ca9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27324915"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep27846"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052125078"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep27846", 
      "https://app.dimensions.ai/details/publication/pub.1052125078"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2016/160621/srep27846/full/srep27846.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep27846'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep27846'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep27846'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep27846'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep27846 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N1ee9ff99a19b4b73879ddb3d26b36388
4 schema:citation sg:pub.10.1038/nature02900
5 sg:pub.10.1038/nature02939
6 sg:pub.10.1038/nature02963
7 sg:pub.10.1038/ncomms2528
8 sg:pub.10.1038/ncomms2988
9 sg:pub.10.1038/ncomms8156
10 sg:pub.10.1038/nphys418
11 https://doi.org/10.1063/1.2436481
12 https://doi.org/10.1063/1.3258022
13 https://doi.org/10.1063/1.3587111
14 https://doi.org/10.1063/1.3627216
15 https://doi.org/10.1063/1.4752114
16 https://doi.org/10.1063/1.4810795
17 https://doi.org/10.1063/1.4868404
18 https://doi.org/10.1063/1.4903851
19 https://doi.org/10.1088/0029-5515/43/7/317
20 https://doi.org/10.1088/0741-3335/51/2/024010
21 https://doi.org/10.1088/0741-3335/54/5/055010
22 https://doi.org/10.1088/0741-3335/56/8/084015
23 https://doi.org/10.1088/1367-2630/13/3/033017
24 https://doi.org/10.1103/physrevlett.101.085002
25 https://doi.org/10.1103/physrevlett.103.035001
26 https://doi.org/10.1103/physrevlett.111.165002
27 https://doi.org/10.1103/physrevlett.113.245002
28 https://doi.org/10.1103/physrevlett.43.267
29 https://doi.org/10.1103/physrevlett.93.135005
30 https://doi.org/10.1103/physrevlett.97.225002
31 https://doi.org/10.1103/physrevlett.98.095004
32 https://doi.org/10.1103/physrevstab.10.061301
33 https://doi.org/10.1103/physrevstab.16.031302
34 https://doi.org/10.1103/physrevx.5.031012
35 https://doi.org/10.1209/0295-5075/113/34002
36 https://doi.org/10.1364/ol.36.002426
37 schema:datePublished 2016-09
38 schema:datePublishedReg 2016-09-01
39 schema:description Laser pulses in current ultra-short TW systems are far from being ideal Gaussian beams. The influence of the presence of non-Gaussian features of the laser pulse is investigated here from experiments and 3D Particle-in-Cell simulations. Both the experimental intensity distribution and wavefront are used as input in the simulations. It is shown that a quantitative agreement between experimental data and simulations requires to use realistic pulse features. Moreover, some trends found in the experiments, such as the growing of the X-ray signal with the plasma length, can only be retrieved in simulations with realistic pulses. The performances on the electron acceleration and the synchrotron X-ray emission are strongly degraded by these non-Gaussian features, even keeping constant the total laser energy. A drop on the X-ray photon number by one order of magnitude was found. This clearly put forward the limitation of using a Gaussian beam in the simulations.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf Na7307c39c2884ebca9df81fc5220cea1
44 Nefda29316cf84740964190fdcf9a6500
45 sg:journal.1045337
46 schema:name Effect of experimental laser imperfections on laser wakefield acceleration and betatron source
47 schema:pagination 27846
48 schema:productId N03e0b6c16c7141caad7d9eadb4c7b9de
49 N76f4e074844443f49d012a5eaa39be7e
50 N7e579a4e767b44719c1170735a207b5d
51 N85f811ef5640466db913ea4653eeda92
52 Nf227b7075d334042b44d246426f4519c
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052125078
54 https://doi.org/10.1038/srep27846
55 schema:sdDatePublished 2019-04-10T19:15
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N4b0095972b2d4cd7a9f277a813cbb6d3
58 schema:url http://www.nature.com/srep/2016/160621/srep27846/full/srep27846.html
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N03e0b6c16c7141caad7d9eadb4c7b9de schema:name doi
63 schema:value 10.1038/srep27846
64 rdf:type schema:PropertyValue
65 N1ee9ff99a19b4b73879ddb3d26b36388 rdf:first sg:person.011366571001.75
66 rdf:rest Na3d0ce839c124ce9b1683623911ca5c3
67 N4b0095972b2d4cd7a9f277a813cbb6d3 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N70bd5638590246758d4ce126a3642b31 rdf:first sg:person.01053465547.50
70 rdf:rest N7faa2786f8f34b9185fa4e8784724783
71 N76f4e074844443f49d012a5eaa39be7e schema:name pubmed_id
72 schema:value 27324915
73 rdf:type schema:PropertyValue
74 N7e579a4e767b44719c1170735a207b5d schema:name nlm_unique_id
75 schema:value 101563288
76 rdf:type schema:PropertyValue
77 N7faa2786f8f34b9185fa4e8784724783 rdf:first sg:person.0656710000.22
78 rdf:rest N94da3bad2e554aab975a3412355fa110
79 N85f811ef5640466db913ea4653eeda92 schema:name dimensions_id
80 schema:value pub.1052125078
81 rdf:type schema:PropertyValue
82 N94da3bad2e554aab975a3412355fa110 rdf:first sg:person.01006764764.40
83 rdf:rest Nd878bfd0cbaf4f3bbdb1f50f2e025c39
84 N9964c0a53d5f44b7a60831d78a8191aa rdf:first sg:person.01033234067.85
85 rdf:rest N70bd5638590246758d4ce126a3642b31
86 Na3d0ce839c124ce9b1683623911ca5c3 rdf:first sg:person.01322613222.40
87 rdf:rest N9964c0a53d5f44b7a60831d78a8191aa
88 Na7307c39c2884ebca9df81fc5220cea1 schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 Nd5966ce439b041e2ba5846e307b3f81a schema:name CEA, DAM, DIF, 91297 Arpajon, France
91 rdf:type schema:Organization
92 Nd878bfd0cbaf4f3bbdb1f50f2e025c39 rdf:first sg:person.0755707622.30
93 rdf:rest rdf:nil
94 Nefda29316cf84740964190fdcf9a6500 schema:volumeNumber 6
95 rdf:type schema:PublicationVolume
96 Nf227b7075d334042b44d246426f4519c schema:name readcube_id
97 schema:value f84a450a904894fad15d2c762b4d85857d9cb9baef1360b93baf7b9513272ca9
98 rdf:type schema:PropertyValue
99 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
100 schema:name Physical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
103 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
104 rdf:type schema:DefinedTerm
105 sg:journal.1045337 schema:issn 2045-2322
106 schema:name Scientific Reports
107 rdf:type schema:Periodical
108 sg:person.01006764764.40 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
109 schema:familyName Phuoc
110 schema:givenName K. Ta
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006764764.40
112 rdf:type schema:Person
113 sg:person.01033234067.85 schema:affiliation https://www.grid.ac/institutes/grid.265695.b
114 schema:familyName Fourmaux
115 schema:givenName S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033234067.85
117 rdf:type schema:Person
118 sg:person.01053465547.50 schema:affiliation https://www.grid.ac/institutes/grid.265695.b
119 schema:familyName Kieffer
120 schema:givenName J. C.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053465547.50
122 rdf:type schema:Person
123 sg:person.011366571001.75 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
124 schema:familyName Ferri
125 schema:givenName J.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011366571001.75
127 rdf:type schema:Person
128 sg:person.01322613222.40 schema:affiliation Nd5966ce439b041e2ba5846e307b3f81a
129 schema:familyName Davoine
130 schema:givenName X.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322613222.40
132 rdf:type schema:Person
133 sg:person.0656710000.22 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
134 schema:familyName Corde
135 schema:givenName S.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656710000.22
137 rdf:type schema:Person
138 sg:person.0755707622.30 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
139 schema:familyName Lifschitz
140 schema:givenName A.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755707622.30
142 rdf:type schema:Person
143 sg:pub.10.1038/nature02900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042278002
144 https://doi.org/10.1038/nature02900
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature02939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000739651
147 https://doi.org/10.1038/nature02939
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nature02963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005399057
150 https://doi.org/10.1038/nature02963
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/ncomms2528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049350656
153 https://doi.org/10.1038/ncomms2528
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/ncomms2988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005071008
156 https://doi.org/10.1038/ncomms2988
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/ncomms8156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036175440
159 https://doi.org/10.1038/ncomms8156
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nphys418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045050360
162 https://doi.org/10.1038/nphys418
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1063/1.2436481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057857302
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.3258022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030522619
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.3587111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057979890
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.3627216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057987837
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.4752114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046419023
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.4810795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058077492
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.4868404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032070351
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.4903851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006565307
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1088/0029-5515/43/7/317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058987160
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1088/0741-3335/51/2/024010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052772263
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1088/0741-3335/54/5/055010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021042596
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1088/0741-3335/56/8/084015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034109062
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1088/1367-2630/13/3/033017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038165507
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.101.085002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753934
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.103.035001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755697
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.111.165002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031924893
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.113.245002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019423721
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.43.267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784401
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.93.135005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829047
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.97.225002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833183
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.98.095004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022164188
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevstab.10.061301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015314999
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevstab.16.031302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037653591
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevx.5.031012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009401380
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1209/0295-5075/113/34002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064227389
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1364/ol.36.002426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065230411
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.265695.b schema:alternateName University of Quebec
217 schema:name INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes J3X 1S2, Québec, Canada
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.462947.a schema:alternateName Laboratoire d'Optique Appliquée
220 schema:name CEA, DAM, DIF, 91297 Arpajon, France
221 Laboratoire d’Optique Appliquée, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...