Defect engineering of the electronic transport through cuprous oxide interlayers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06-03

AUTHORS

Mohamed M. Fadlallah, Ulrich Eckern, Udo Schwingenschlögl

ABSTRACT

The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work. More... »

PAGES

27049

References to SciGraph publications

  • 2005-03-06. Towards molecular spintronics in NATURE MATERIALS
  • 2013-12-01. Improving the performance of silicon anode in lithium-ion batteries by Cu2O coating layer in JOURNAL OF APPLIED ELECTROCHEMISTRY
  • 2014-11-28. Probing Defects in Nitrogen-Doped Cu2O in SCIENTIFIC REPORTS
  • 1976-02. Thermogravimetric study of the non-stoichiometry of cuprite Cu2O in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep27049

    DOI

    http://dx.doi.org/10.1038/srep27049

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029469084

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27256905


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Theoretical and Computational Chemistry", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Physics Department, Faculty of Science, Benha University, Benha, Egypt", 
              "id": "http://www.grid.ac/institutes/grid.411660.4", 
              "name": [
                "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, 86135, Augsburg, Germany", 
                "Centre for Fundamental Physics, Zewail City of Science and Technology, Giza, Egypt", 
                "Physics Department, Faculty of Science, Benha University, Benha, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fadlallah", 
            "givenName": "Mohamed M.", 
            "id": "sg:person.0615133352.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615133352.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, 86135, Augsburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, 86135, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eckern", 
            "givenName": "Ulrich", 
            "id": "sg:person.012657025101.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.45672.32", 
              "name": [
                "Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schwingenschl\u00f6gl", 
            "givenName": "Udo", 
            "id": "sg:person.01217753120.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217753120.70"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmat1349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006404666", 
              "https://doi.org/10.1038/nmat1349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00551450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009180604", 
              "https://doi.org/10.1007/bf00551450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10800-013-0648-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023735892", 
              "https://doi.org/10.1007/s10800-013-0648-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep07240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052298740", 
              "https://doi.org/10.1038/srep07240"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-06-03", 
        "datePublishedReg": "2016-06-03", 
        "description": "The electronic transport through Au\u2013(Cu2O)n\u2013Au junctions is investigated using first-principles calculations and the nonequilibrium Green\u2019s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/srep27049", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "electronic transport", 
          "oxide interlayer", 
          "defect engineering", 
          "Cl doping", 
          "function method", 
          "substitutional defects", 
          "point defects", 
          "nonequilibrium Green's function method", 
          "experimental observations", 
          "Green's function method", 
          "first-principles calculations", 
          "O interstitials", 
          "defect formation energies", 
          "Cu vacancies", 
          "O vacancies", 
          "formation energy", 
          "recent experimental observations", 
          "vacancies", 
          "interlayer", 
          "behavior results", 
          "doping", 
          "Cu2O", 
          "high conductance", 
          "transport", 
          "thickness", 
          "defects", 
          "engineering", 
          "interstitials", 
          "agreement", 
          "Frenkel defects", 
          "anion substitution", 
          "Au junctions", 
          "energy", 
          "junction", 
          "superposition", 
          "theoretical work", 
          "conductance", 
          "calculations", 
          "work", 
          "method", 
          "results", 
          "effect", 
          "substitution", 
          "analysis", 
          "observations", 
          "Cl substitution", 
          "Cu deficiency", 
          "N-substitution", 
          "exception", 
          "deficiency"
        ], 
        "name": "Defect engineering of the electronic transport through cuprous oxide interlayers", 
        "pagination": "27049", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029469084"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep27049"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27256905"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep27049", 
          "https://app.dimensions.ai/details/publication/pub.1029469084"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_688.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/srep27049"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep27049'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep27049'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep27049'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep27049'


     

    This table displays all metadata directly associated to this object as RDF triples.

    149 TRIPLES      22 PREDICATES      80 URIs      68 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep27049 schema:about anzsrc-for:03
    2 anzsrc-for:0307
    3 schema:author N8ee0a968a0204fe9a4751ba8ff4dcbfa
    4 schema:citation sg:pub.10.1007/bf00551450
    5 sg:pub.10.1007/s10800-013-0648-9
    6 sg:pub.10.1038/nmat1349
    7 sg:pub.10.1038/srep07240
    8 schema:datePublished 2016-06-03
    9 schema:datePublishedReg 2016-06-03
    10 schema:description The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N4d05b8821c014812a5fda62ab25a1d80
    15 Neae72861a0fc41b88d6b25a6120d4ed7
    16 sg:journal.1045337
    17 schema:keywords Au junctions
    18 Cl doping
    19 Cl substitution
    20 Cu deficiency
    21 Cu vacancies
    22 Cu2O
    23 Frenkel defects
    24 Green's function method
    25 N-substitution
    26 O interstitials
    27 O vacancies
    28 agreement
    29 analysis
    30 anion substitution
    31 behavior results
    32 calculations
    33 conductance
    34 defect engineering
    35 defect formation energies
    36 defects
    37 deficiency
    38 doping
    39 effect
    40 electronic transport
    41 energy
    42 engineering
    43 exception
    44 experimental observations
    45 first-principles calculations
    46 formation energy
    47 function method
    48 high conductance
    49 interlayer
    50 interstitials
    51 junction
    52 method
    53 nonequilibrium Green's function method
    54 observations
    55 oxide interlayer
    56 point defects
    57 recent experimental observations
    58 results
    59 substitution
    60 substitutional defects
    61 superposition
    62 theoretical work
    63 thickness
    64 transport
    65 vacancies
    66 work
    67 schema:name Defect engineering of the electronic transport through cuprous oxide interlayers
    68 schema:pagination 27049
    69 schema:productId N60f46e010a2b40108a529794cd3418f5
    70 N753d5c34001a4695a9182483ec690cc0
    71 N8cb0967a254649d6ac2afae0e182c24c
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029469084
    73 https://doi.org/10.1038/srep27049
    74 schema:sdDatePublished 2022-05-20T07:31
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher Nae08cc55d3a943eb82a10820810cd511
    77 schema:url https://doi.org/10.1038/srep27049
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N4d05b8821c014812a5fda62ab25a1d80 schema:volumeNumber 6
    82 rdf:type schema:PublicationVolume
    83 N4e9ce279f1d44957bb7203ac79551431 rdf:first sg:person.012657025101.49
    84 rdf:rest Ncf55867aad304760b1ccbeecd1b1caeb
    85 N60f46e010a2b40108a529794cd3418f5 schema:name dimensions_id
    86 schema:value pub.1029469084
    87 rdf:type schema:PropertyValue
    88 N753d5c34001a4695a9182483ec690cc0 schema:name doi
    89 schema:value 10.1038/srep27049
    90 rdf:type schema:PropertyValue
    91 N8cb0967a254649d6ac2afae0e182c24c schema:name pubmed_id
    92 schema:value 27256905
    93 rdf:type schema:PropertyValue
    94 N8ee0a968a0204fe9a4751ba8ff4dcbfa rdf:first sg:person.0615133352.41
    95 rdf:rest N4e9ce279f1d44957bb7203ac79551431
    96 Nae08cc55d3a943eb82a10820810cd511 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 Ncf55867aad304760b1ccbeecd1b1caeb rdf:first sg:person.01217753120.70
    99 rdf:rest rdf:nil
    100 Neae72861a0fc41b88d6b25a6120d4ed7 schema:issueNumber 1
    101 rdf:type schema:PublicationIssue
    102 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Chemical Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Theoretical and Computational Chemistry
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1045337 schema:issn 2045-2322
    109 schema:name Scientific Reports
    110 schema:publisher Springer Nature
    111 rdf:type schema:Periodical
    112 sg:person.01217753120.70 schema:affiliation grid-institutes:grid.45672.32
    113 schema:familyName Schwingenschlögl
    114 schema:givenName Udo
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217753120.70
    116 rdf:type schema:Person
    117 sg:person.012657025101.49 schema:affiliation grid-institutes:grid.7307.3
    118 schema:familyName Eckern
    119 schema:givenName Ulrich
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49
    121 rdf:type schema:Person
    122 sg:person.0615133352.41 schema:affiliation grid-institutes:grid.411660.4
    123 schema:familyName Fadlallah
    124 schema:givenName Mohamed M.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615133352.41
    126 rdf:type schema:Person
    127 sg:pub.10.1007/bf00551450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009180604
    128 https://doi.org/10.1007/bf00551450
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s10800-013-0648-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023735892
    131 https://doi.org/10.1007/s10800-013-0648-9
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/nmat1349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006404666
    134 https://doi.org/10.1038/nmat1349
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/srep07240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052298740
    137 https://doi.org/10.1038/srep07240
    138 rdf:type schema:CreativeWork
    139 grid-institutes:grid.411660.4 schema:alternateName Physics Department, Faculty of Science, Benha University, Benha, Egypt
    140 schema:name Centre for Fundamental Physics, Zewail City of Science and Technology, Giza, Egypt
    141 Institut für Physik, Universität Augsburg, 86135, Augsburg, Germany
    142 Physics Department, Faculty of Science, Benha University, Benha, Egypt
    143 rdf:type schema:Organization
    144 grid-institutes:grid.45672.32 schema:alternateName Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
    145 schema:name Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
    146 rdf:type schema:Organization
    147 grid-institutes:grid.7307.3 schema:alternateName Institut für Physik, Universität Augsburg, 86135, Augsburg, Germany
    148 schema:name Institut für Physik, Universität Augsburg, 86135, Augsburg, Germany
    149 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...