Defect engineering of the electronic transport through cuprous oxide interlayers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06-03

AUTHORS

Mohamed M. Fadlallah, Ulrich Eckern, Udo Schwingenschlögl

ABSTRACT

The electronic transport through Au-(Cu2O)n-Au junctions is investigated using first-principles calculations and the nonequilibrium Green's function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work. More... »

PAGES

27049

References to SciGraph publications

  • 2005-03-06. Towards molecular spintronics in NATURE MATERIALS
  • 2013-12-01. Improving the performance of silicon anode in lithium-ion batteries by Cu2O coating layer in JOURNAL OF APPLIED ELECTROCHEMISTRY
  • 2014-11-28. Probing Defects in Nitrogen-Doped Cu2O in SCIENTIFIC REPORTS
  • 1976-02. Thermogravimetric study of the non-stoichiometry of cuprite Cu2O in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep27049

    DOI

    http://dx.doi.org/10.1038/srep27049

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029469084

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27256905


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Theoretical and Computational Chemistry", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Physics Department, Faculty of Science, Benha University, Benha, Egypt", 
              "id": "http://www.grid.ac/institutes/grid.411660.4", 
              "name": [
                "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, 86135 Augsburg, Germany", 
                "Centre for Fundamental Physics, Zewail City of Science and Technology, Giza, Egypt", 
                "Physics Department, Faculty of Science, Benha University, Benha, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fadlallah", 
            "givenName": "Mohamed M.", 
            "id": "sg:person.0615133352.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615133352.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, 86135 Augsburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, 86135 Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eckern", 
            "givenName": "Ulrich", 
            "id": "sg:person.012657025101.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.45672.32", 
              "name": [
                "King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schwingenschl\u00f6gl", 
            "givenName": "Udo", 
            "id": "sg:person.01217753120.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217753120.70"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10800-013-0648-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023735892", 
              "https://doi.org/10.1007/s10800-013-0648-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep07240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052298740", 
              "https://doi.org/10.1038/srep07240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00551450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009180604", 
              "https://doi.org/10.1007/bf00551450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006404666", 
              "https://doi.org/10.1038/nmat1349"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-06-03", 
        "datePublishedReg": "2016-06-03", 
        "description": "The electronic transport through Au-(Cu2O)n-Au junctions is investigated using first-principles calculations and the nonequilibrium Green's function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/srep27049", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "electronic transport", 
          "oxide interlayer", 
          "defect engineering", 
          "Cl doping", 
          "function method", 
          "point defects", 
          "substitutional defects", 
          "experimental observations", 
          "nonequilibrium Green's function method", 
          "Green's function method", 
          "first-principles calculations", 
          "defect formation energies", 
          "Cu vacancies", 
          "recent experimental observations", 
          "formation energy", 
          "interlayer", 
          "vacancies", 
          "doping", 
          "Cu2O", 
          "behavior results", 
          "thickness", 
          "transport", 
          "high conductance", 
          "defects", 
          "engineering", 
          "agreement", 
          "Frenkel defects", 
          "interstitials", 
          "Au junctions", 
          "anion substitution", 
          "energy", 
          "junction", 
          "superposition", 
          "theoretical work", 
          "calculations", 
          "conductance", 
          "method", 
          "work", 
          "results", 
          "effect", 
          "substitution", 
          "analysis", 
          "observations", 
          "Cl substitution", 
          "Cu deficiency", 
          "exception", 
          "deficiency", 
          "bulk-like (in contrast to near-interface) defects", 
          "Cl substitutional defects", 
          "similar transmission behavior results", 
          "transmission behavior results", 
          "thick Cu2O junctions", 
          "Cu2O junctions", 
          "cuprous oxide interlayers"
        ], 
        "name": "Defect engineering of the electronic transport through cuprous oxide interlayers", 
        "pagination": "27049", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029469084"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep27049"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27256905"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep27049", 
          "https://app.dimensions.ai/details/publication/pub.1029469084"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_691.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/srep27049"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep27049'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep27049'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep27049'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep27049'


     

    This table displays all metadata directly associated to this object as RDF triples.

    153 TRIPLES      22 PREDICATES      84 URIs      72 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep27049 schema:about anzsrc-for:03
    2 anzsrc-for:0307
    3 schema:author Nea02923484f048c9899bd3baace7468a
    4 schema:citation sg:pub.10.1007/bf00551450
    5 sg:pub.10.1007/s10800-013-0648-9
    6 sg:pub.10.1038/nmat1349
    7 sg:pub.10.1038/srep07240
    8 schema:datePublished 2016-06-03
    9 schema:datePublishedReg 2016-06-03
    10 schema:description The electronic transport through Au-(Cu2O)n-Au junctions is investigated using first-principles calculations and the nonequilibrium Green's function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N072df3879d3e41d09b02ec0e734295d0
    15 Needb23cb2147419ebec326506bd0b293
    16 sg:journal.1045337
    17 schema:keywords Au junctions
    18 Cl doping
    19 Cl substitution
    20 Cl substitutional defects
    21 Cu deficiency
    22 Cu vacancies
    23 Cu2O
    24 Cu2O junctions
    25 Frenkel defects
    26 Green's function method
    27 agreement
    28 analysis
    29 anion substitution
    30 behavior results
    31 bulk-like (in contrast to near-interface) defects
    32 calculations
    33 conductance
    34 cuprous oxide interlayers
    35 defect engineering
    36 defect formation energies
    37 defects
    38 deficiency
    39 doping
    40 effect
    41 electronic transport
    42 energy
    43 engineering
    44 exception
    45 experimental observations
    46 first-principles calculations
    47 formation energy
    48 function method
    49 high conductance
    50 interlayer
    51 interstitials
    52 junction
    53 method
    54 nonequilibrium Green's function method
    55 observations
    56 oxide interlayer
    57 point defects
    58 recent experimental observations
    59 results
    60 similar transmission behavior results
    61 substitution
    62 substitutional defects
    63 superposition
    64 theoretical work
    65 thick Cu2O junctions
    66 thickness
    67 transmission behavior results
    68 transport
    69 vacancies
    70 work
    71 schema:name Defect engineering of the electronic transport through cuprous oxide interlayers
    72 schema:pagination 27049
    73 schema:productId N0218c0b1da2c4751ab5ebac70f5cc895
    74 Na3a11021ae1d4d7799952af9970a31df
    75 Nb89f55ab0e604bb0b2dc320488356f00
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029469084
    77 https://doi.org/10.1038/srep27049
    78 schema:sdDatePublished 2022-01-01T18:39
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher N5011d4b9dd4c4330a914f2a470fc013c
    81 schema:url https://doi.org/10.1038/srep27049
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N0218c0b1da2c4751ab5ebac70f5cc895 schema:name pubmed_id
    86 schema:value 27256905
    87 rdf:type schema:PropertyValue
    88 N072df3879d3e41d09b02ec0e734295d0 schema:volumeNumber 6
    89 rdf:type schema:PublicationVolume
    90 N2548050425d64f8a9336b6eb1fce884b rdf:first sg:person.012657025101.49
    91 rdf:rest N27b3f253b0fa467cb8faa5c02b35d7c0
    92 N27b3f253b0fa467cb8faa5c02b35d7c0 rdf:first sg:person.01217753120.70
    93 rdf:rest rdf:nil
    94 N5011d4b9dd4c4330a914f2a470fc013c schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 Na3a11021ae1d4d7799952af9970a31df schema:name doi
    97 schema:value 10.1038/srep27049
    98 rdf:type schema:PropertyValue
    99 Nb89f55ab0e604bb0b2dc320488356f00 schema:name dimensions_id
    100 schema:value pub.1029469084
    101 rdf:type schema:PropertyValue
    102 Nea02923484f048c9899bd3baace7468a rdf:first sg:person.0615133352.41
    103 rdf:rest N2548050425d64f8a9336b6eb1fce884b
    104 Needb23cb2147419ebec326506bd0b293 schema:issueNumber 1
    105 rdf:type schema:PublicationIssue
    106 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Chemical Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Theoretical and Computational Chemistry
    111 rdf:type schema:DefinedTerm
    112 sg:journal.1045337 schema:issn 2045-2322
    113 schema:name Scientific Reports
    114 schema:publisher Springer Nature
    115 rdf:type schema:Periodical
    116 sg:person.01217753120.70 schema:affiliation grid-institutes:grid.45672.32
    117 schema:familyName Schwingenschlögl
    118 schema:givenName Udo
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217753120.70
    120 rdf:type schema:Person
    121 sg:person.012657025101.49 schema:affiliation grid-institutes:grid.7307.3
    122 schema:familyName Eckern
    123 schema:givenName Ulrich
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49
    125 rdf:type schema:Person
    126 sg:person.0615133352.41 schema:affiliation grid-institutes:grid.411660.4
    127 schema:familyName Fadlallah
    128 schema:givenName Mohamed M.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615133352.41
    130 rdf:type schema:Person
    131 sg:pub.10.1007/bf00551450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009180604
    132 https://doi.org/10.1007/bf00551450
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s10800-013-0648-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023735892
    135 https://doi.org/10.1007/s10800-013-0648-9
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1038/nmat1349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006404666
    138 https://doi.org/10.1038/nmat1349
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/srep07240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052298740
    141 https://doi.org/10.1038/srep07240
    142 rdf:type schema:CreativeWork
    143 grid-institutes:grid.411660.4 schema:alternateName Physics Department, Faculty of Science, Benha University, Benha, Egypt
    144 schema:name Centre for Fundamental Physics, Zewail City of Science and Technology, Giza, Egypt
    145 Institut für Physik, Universität Augsburg, 86135 Augsburg, Germany
    146 Physics Department, Faculty of Science, Benha University, Benha, Egypt
    147 rdf:type schema:Organization
    148 grid-institutes:grid.45672.32 schema:alternateName King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia
    149 schema:name King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia
    150 rdf:type schema:Organization
    151 grid-institutes:grid.7307.3 schema:alternateName Institut für Physik, Universität Augsburg, 86135 Augsburg, Germany
    152 schema:name Institut für Physik, Universität Augsburg, 86135 Augsburg, Germany
    153 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...