Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05-19

AUTHORS

Peipeng Liang, Xiuqin Jia, Niels A. Taatgen, Jelmer P. Borst, Kuncheng Li

ABSTRACT

Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network. More... »

PAGES

25976

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep25976

DOI

http://dx.doi.org/10.1038/srep25976

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032314464

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27193284


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cognition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Parietal Lobe", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Problem Solving", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Key Lab of MRI and Brain Informatics, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Beijing Key Lab of MRI and Brain Informatics, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Peipeng", 
        "id": "sg:person.0722540505.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722540505.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Key Lab of MRI and Brain Informatics, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Beijing Key Lab of MRI and Brain Informatics, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Xiuqin", 
        "id": "sg:person.0715310133.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715310133.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Institute of Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taatgen", 
        "givenName": "Niels A.", 
        "id": "sg:person.01106140514.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106140514.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Institute of Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borst", 
        "givenName": "Jelmer P.", 
        "id": "sg:person.01000625210.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000625210.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Key Lab of MRI and Brain Informatics, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Beijing Key Lab of MRI and Brain Informatics, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11427-009-0089-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046631272", 
          "https://doi.org/10.1007/s11427-009-0089-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03196490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007018287", 
          "https://doi.org/10.3758/bf03196490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77028-2_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016250293", 
          "https://doi.org/10.1007/978-3-540-77028-2_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11427-011-4166-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002287180", 
          "https://doi.org/10.1007/s11427-011-4166-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-2236-9_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026513674", 
          "https://doi.org/10.1007/978-1-4939-2236-9_17"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05-19", 
    "datePublishedReg": "2016-05-19", 
    "description": "Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep25976", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7009522", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8298220", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8181325", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "numerical inductive reasoning", 
      "fronto-parietal network", 
      "inductive reasoning", 
      "cognitive model", 
      "computational cognitive model", 
      "cognitive architecture ACT", 
      "rule identification", 
      "fronto-parietal regions", 
      "perceptual judgments", 
      "numeric materials", 
      "relational integration", 
      "behavioral results", 
      "fMRI study", 
      "common activation", 
      "brain activity", 
      "declarative knowledge", 
      "reasoning", 
      "response time", 
      "activity patterns", 
      "intermediate representation", 
      "types of problems", 
      "error rate", 
      "judgments", 
      "more exchange", 
      "current questions", 
      "previous studies", 
      "representation", 
      "central role", 
      "network", 
      "study", 
      "questions", 
      "process", 
      "results", 
      "covariates", 
      "knowledge", 
      "model", 
      "identification", 
      "integration", 
      "acts", 
      "issues", 
      "role", 
      "patterns", 
      "problem", 
      "activity", 
      "interest", 
      "activation", 
      "types", 
      "rules", 
      "time", 
      "calculation process", 
      "region", 
      "exchange", 
      "rate", 
      "materials", 
      "calculations"
    ], 
    "name": "Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model", 
    "pagination": "25976", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032314464"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep25976"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27193284"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep25976", 
      "https://app.dimensions.ai/details/publication/pub.1032314464"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_710.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep25976"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep25976'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep25976'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep25976'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep25976'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      95 URIs      82 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep25976 schema:about N291f59984b634e2487d6ce6a53d4c60e
2 N380b95ab98284ee08588ee96243ce53e
3 N3dfb1685865646efafaa56e22d47e58b
4 N59052fe2ac2547969dfaf8b200ed5025
5 N6d59cc02b9224280b6a6ba778ea14bf1
6 N7452ae2e8a6c411dba3ab8ddfc0c8376
7 N93dbf1e609114f819d6bc2678b0a5010
8 N997ebbf9b8e4423bbf43091455c0557d
9 Nac07003c5ef347bf8bdb957adf4403f2
10 Nae8ed2f9f5864a11a27aeb3aedd2c249
11 anzsrc-for:17
12 anzsrc-for:1701
13 schema:author N5d486721cf22419b8771806601f8849e
14 schema:citation sg:pub.10.1007/978-1-4939-2236-9_17
15 sg:pub.10.1007/978-3-540-77028-2_12
16 sg:pub.10.1007/s11427-009-0089-1
17 sg:pub.10.1007/s11427-011-4166-x
18 sg:pub.10.3758/bf03196490
19 schema:datePublished 2016-05-19
20 schema:datePublishedReg 2016-05-19
21 schema:description Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.
22 schema:genre article
23 schema:isAccessibleForFree true
24 schema:isPartOf N1b592a093e3c499aa04c938786763239
25 Ne62ab065a91447628584816c21367e21
26 sg:journal.1045337
27 schema:keywords activation
28 activity
29 activity patterns
30 acts
31 behavioral results
32 brain activity
33 calculation process
34 calculations
35 central role
36 cognitive architecture ACT
37 cognitive model
38 common activation
39 computational cognitive model
40 covariates
41 current questions
42 declarative knowledge
43 error rate
44 exchange
45 fMRI study
46 fronto-parietal network
47 fronto-parietal regions
48 identification
49 inductive reasoning
50 integration
51 interest
52 intermediate representation
53 issues
54 judgments
55 knowledge
56 materials
57 model
58 more exchange
59 network
60 numeric materials
61 numerical inductive reasoning
62 patterns
63 perceptual judgments
64 previous studies
65 problem
66 process
67 questions
68 rate
69 reasoning
70 region
71 relational integration
72 representation
73 response time
74 results
75 role
76 rule identification
77 rules
78 study
79 time
80 types
81 types of problems
82 schema:name Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model
83 schema:pagination 25976
84 schema:productId N260b69ba1563406cb81533d0cfaf362d
85 N821d299d2ea644ada4dd66d16e0123ee
86 N9ff3d638061d41df8ca915aed1a0f7cf
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032314464
88 https://doi.org/10.1038/srep25976
89 schema:sdDatePublished 2022-10-01T06:42
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N0787b0280da34eb18b6359e6ff70fa54
92 schema:url https://doi.org/10.1038/srep25976
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0787b0280da34eb18b6359e6ff70fa54 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N1b592a093e3c499aa04c938786763239 schema:issueNumber 1
99 rdf:type schema:PublicationIssue
100 N260b69ba1563406cb81533d0cfaf362d schema:name doi
101 schema:value 10.1038/srep25976
102 rdf:type schema:PropertyValue
103 N291f59984b634e2487d6ce6a53d4c60e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Humans
105 rdf:type schema:DefinedTerm
106 N380b95ab98284ee08588ee96243ce53e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Adult
108 rdf:type schema:DefinedTerm
109 N3dfb1685865646efafaa56e22d47e58b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Female
111 rdf:type schema:DefinedTerm
112 N59052fe2ac2547969dfaf8b200ed5025 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Male
114 rdf:type schema:DefinedTerm
115 N5bb7aa6f87e54de0a769f7e7716104e3 rdf:first sg:person.01326527402.59
116 rdf:rest rdf:nil
117 N5d486721cf22419b8771806601f8849e rdf:first sg:person.0722540505.81
118 rdf:rest Nf9406b0ce2224526a1edb93846d6b706
119 N6d59cc02b9224280b6a6ba778ea14bf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Young Adult
121 rdf:type schema:DefinedTerm
122 N7452ae2e8a6c411dba3ab8ddfc0c8376 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Parietal Lobe
124 rdf:type schema:DefinedTerm
125 N821d299d2ea644ada4dd66d16e0123ee schema:name dimensions_id
126 schema:value pub.1032314464
127 rdf:type schema:PropertyValue
128 N93dbf1e609114f819d6bc2678b0a5010 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Brain Mapping
130 rdf:type schema:DefinedTerm
131 N997ebbf9b8e4423bbf43091455c0557d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Problem Solving
133 rdf:type schema:DefinedTerm
134 N9ff3d638061d41df8ca915aed1a0f7cf schema:name pubmed_id
135 schema:value 27193284
136 rdf:type schema:PropertyValue
137 Nac07003c5ef347bf8bdb957adf4403f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Cognition
139 rdf:type schema:DefinedTerm
140 Nae8ed2f9f5864a11a27aeb3aedd2c249 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Magnetic Resonance Imaging
142 rdf:type schema:DefinedTerm
143 Nafb7e088ef664d2da3826ca3574e8766 rdf:first sg:person.01000625210.50
144 rdf:rest N5bb7aa6f87e54de0a769f7e7716104e3
145 Nd623f1cf36684ac68b37102b4312648d rdf:first sg:person.01106140514.25
146 rdf:rest Nafb7e088ef664d2da3826ca3574e8766
147 Ne62ab065a91447628584816c21367e21 schema:volumeNumber 6
148 rdf:type schema:PublicationVolume
149 Nf9406b0ce2224526a1edb93846d6b706 rdf:first sg:person.0715310133.08
150 rdf:rest Nd623f1cf36684ac68b37102b4312648d
151 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
152 schema:name Psychology and Cognitive Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
155 schema:name Psychology
156 rdf:type schema:DefinedTerm
157 sg:grant.7009522 http://pending.schema.org/fundedItem sg:pub.10.1038/srep25976
158 rdf:type schema:MonetaryGrant
159 sg:grant.8181325 http://pending.schema.org/fundedItem sg:pub.10.1038/srep25976
160 rdf:type schema:MonetaryGrant
161 sg:grant.8298220 http://pending.schema.org/fundedItem sg:pub.10.1038/srep25976
162 rdf:type schema:MonetaryGrant
163 sg:journal.1045337 schema:issn 2045-2322
164 schema:name Scientific Reports
165 schema:publisher Springer Nature
166 rdf:type schema:Periodical
167 sg:person.01000625210.50 schema:affiliation grid-institutes:grid.4830.f
168 schema:familyName Borst
169 schema:givenName Jelmer P.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000625210.50
171 rdf:type schema:Person
172 sg:person.01106140514.25 schema:affiliation grid-institutes:grid.4830.f
173 schema:familyName Taatgen
174 schema:givenName Niels A.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106140514.25
176 rdf:type schema:Person
177 sg:person.01326527402.59 schema:affiliation grid-institutes:grid.413259.8
178 schema:familyName Li
179 schema:givenName Kuncheng
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
181 rdf:type schema:Person
182 sg:person.0715310133.08 schema:affiliation grid-institutes:grid.413259.8
183 schema:familyName Jia
184 schema:givenName Xiuqin
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715310133.08
186 rdf:type schema:Person
187 sg:person.0722540505.81 schema:affiliation grid-institutes:grid.413259.8
188 schema:familyName Liang
189 schema:givenName Peipeng
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722540505.81
191 rdf:type schema:Person
192 sg:pub.10.1007/978-1-4939-2236-9_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026513674
193 https://doi.org/10.1007/978-1-4939-2236-9_17
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/978-3-540-77028-2_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016250293
196 https://doi.org/10.1007/978-3-540-77028-2_12
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s11427-009-0089-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046631272
199 https://doi.org/10.1007/s11427-009-0089-1
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s11427-011-4166-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002287180
202 https://doi.org/10.1007/s11427-011-4166-x
203 rdf:type schema:CreativeWork
204 sg:pub.10.3758/bf03196490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007018287
205 https://doi.org/10.3758/bf03196490
206 rdf:type schema:CreativeWork
207 grid-institutes:grid.413259.8 schema:alternateName Beijing Key Lab of MRI and Brain Informatics, 100053, Beijing, China
208 schema:name Beijing Key Lab of MRI and Brain Informatics, 100053, Beijing, China
209 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
210 rdf:type schema:Organization
211 grid-institutes:grid.4830.f schema:alternateName Institute of Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands
212 schema:name Institute of Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...