Microsaccades enable efficient synchrony-based coding in the retina: a simulation study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-04-11

AUTHORS

Timothée Masquelier, Geoffrey Portelli, Pierre Kornprobst

ABSTRACT

It is now reasonably well established that microsaccades (MS) enhance visual perception, although the underlying neuronal mechanisms are unclear. Here, using numerical simulations, we show that MSs enable efficient synchrony-based coding among the primate retinal ganglion cells (RGC). First, using a jerking contrast edge as stimulus, we demonstrate a qualitative change in the RGC responses: synchronous firing, with a precision in the 10 ms range, only occurs at high speed and high contrast. MSs appear to be sufficiently fast to be able reach the synchronous regime. Conversely, the other kinds of fixational eye movements known as tremor and drift both hardly synchronize RGCs because of a too weak amplitude and a too slow speed respectively. Then, under natural image stimulation, we find that each MS causes certain RGCs to fire synchronously, namely those whose receptive fields contain contrast edges after the MS. The emitted synchronous spike volley thus rapidly transmits the most salient edges of the stimulus, which often constitute the most crucial information. We demonstrate that the readout could be done rapidly by simple coincidence-detector neurons without knowledge of the MS landing time, and that the required connectivity could emerge spontaneously with spike timing-dependent plasticity. More... »

PAGES

24086

References to SciGraph publications

  • 2002-03-04. Retinal ganglion cell synchronization by fixational eye movements improves feature estimation in NATURE NEUROSCIENCE
  • 1996-02. Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus in NATURE
  • 2011-09-21. Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2012. Evaluating SPAN Incremental Learning for Handwritten Digit Recognition in NEURAL INFORMATION PROCESSING
  • 1993-10. Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns in BIOLOGICAL CYBERNETICS
  • 2003-05-12. Rapid global shifts in natural scenes block spiking in specific ganglion cell types in NATURE NEUROSCIENCE
  • 2010-10-31. Microsaccades Precisely Relocate Gaze in a High Visual Acuity Task in NATURE NEUROSCIENCE
  • 2010-09. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding in NATURE REVIEWS NEUROSCIENCE
  • 2000-03. Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys in NATURE NEUROSCIENCE
  • 2006-11-29. Simultaneity in the millisecond range as a requirement for effective shape recognition in BEHAVIORAL AND BRAIN FUNCTIONS
  • 2008-08-01. Virtual Retina: A biological retina model and simulator, with contrast gain control in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 1995-06. Temporal encoding in nervous systems: A rigorous definition in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 1999-11-01. Hierarchical models of object recognition in cortex in NATURE NEUROSCIENCE
  • 2004-07. ModelDB: A Database to Support Computational Neuroscience in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2004-03. The role of fixational eye movements in visual perception in NATURE REVIEWS NEUROSCIENCE
  • 2012-08-21. Information coding in a laminar computational model of cat primary visual cortex in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2012. Salient Instance Selection for Multiple-Instance Learning in NEURAL INFORMATION PROCESSING
  • 2013-01-18. The impact of microsaccades on vision: towards a unified theory of saccadic function in NATURE REVIEWS NEUROSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep24086

    DOI

    http://dx.doi.org/10.1038/srep24086

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021651075

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27063867


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Eye Movements", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Neurological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photic Stimulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retinal Ganglion Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Saccades", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Visual Perception", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CNRS, UMR_7210, Paris, F-75012, France", 
              "id": "http://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "INSERM, U968, Paris, F-75012, France", 
                "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France", 
                "CNRS, UMR_7210, Paris, F-75012, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Masquelier", 
            "givenName": "Timoth\u00e9e", 
            "id": "sg:person.01271016666.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271016666.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biovision Team, Inria Sophia Antipolis M\u00e9diterran\u00e9e, 06902, France", 
              "id": "http://www.grid.ac/institutes/grid.457356.6", 
              "name": [
                "Biovision Team, Inria Sophia Antipolis M\u00e9diterran\u00e9e, 06902, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Portelli", 
            "givenName": "Geoffrey", 
            "id": "sg:person.01115333675.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115333675.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biovision Team, Inria Sophia Antipolis M\u00e9diterran\u00e9e, 06902, France", 
              "id": "http://www.grid.ac/institutes/grid.457356.6", 
              "name": [
                "Biovision Team, Inria Sophia Antipolis M\u00e9diterran\u00e9e, 06902, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kornprobst", 
            "givenName": "Pierre", 
            "id": "sg:person.010045241071.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045241071.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1744-9081-2-38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007432990", 
              "https://doi.org/10.1186/1744-9081-2-38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/14819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035393709", 
              "https://doi.org/10.1038/14819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00199450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021729724", 
              "https://doi.org/10.1007/bf00199450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn3405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022753206", 
              "https://doi.org/10.1038/nrn3405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-011-0361-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046209037", 
              "https://doi.org/10.1007/s10827-011-0361-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:jcns.0000023869.22017.2e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023383628", 
              "https://doi.org/10.1023/b:jcns.0000023869.22017.2e"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn1348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009152511", 
              "https://doi.org/10.1038/nrn1348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-34487-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041508101", 
              "https://doi.org/10.1007/978-3-642-34487-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/72961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039260162", 
              "https://doi.org/10.1038/72961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/379728a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027817577", 
              "https://doi.org/10.1038/379728a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039099450", 
              "https://doi.org/10.1038/nn821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00961885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001896844", 
              "https://doi.org/10.1007/bf00961885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-34487-9_81", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028476924", 
              "https://doi.org/10.1007/978-3-642-34487-9_81"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001312578", 
              "https://doi.org/10.1038/nrn2886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026963541", 
              "https://doi.org/10.1038/nn1061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-008-0108-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036688865", 
              "https://doi.org/10.1007/s10827-008-0108-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-012-0420-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032082653", 
              "https://doi.org/10.1007/s10827-012-0420-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.2663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044203418", 
              "https://doi.org/10.1038/nn.2663"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-04-11", 
        "datePublishedReg": "2016-04-11", 
        "description": "It is now reasonably well established that microsaccades (MS) enhance visual perception, although the underlying neuronal mechanisms are unclear. Here, using numerical simulations, we show that MSs enable efficient synchrony-based coding among the primate retinal ganglion cells (RGC). First, using a jerking contrast edge as stimulus, we demonstrate a qualitative change in the RGC responses: synchronous firing, with a precision in the 10\u2009ms range, only occurs at high speed and high contrast. MSs appear to be sufficiently fast to be able reach the synchronous regime. Conversely, the other kinds of fixational eye movements known as tremor and drift both hardly synchronize RGCs because of a too weak amplitude and a too slow speed respectively. Then, under natural image stimulation, we find that each MS causes certain RGCs to fire synchronously, namely those whose receptive fields contain contrast edges after the MS. The emitted synchronous spike volley thus rapidly transmits the most salient edges of the stimulus, which often constitute the most crucial information. We demonstrate that the readout could be done rapidly by simple coincidence-detector neurons without knowledge of the MS landing time, and that the required connectivity could emerge spontaneously with spike timing-dependent plasticity. ", 
        "genre": "article", 
        "id": "sg:pub.10.1038/srep24086", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3791326", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "retinal ganglion cells", 
          "certain retinal ganglion cells", 
          "primate retinal ganglion cells", 
          "fixational eye movements", 
          "underlying neuronal mechanisms", 
          "RGC responses", 
          "ganglion cells", 
          "coincidence detector neurons", 
          "neuronal mechanisms", 
          "synchronous firing", 
          "synchronous spike volleys", 
          "timing-dependent plasticity", 
          "eye movements", 
          "receptive fields", 
          "microsaccades", 
          "spike-timing dependent plasticity", 
          "spike volleys", 
          "stimuli", 
          "volleys", 
          "neurons", 
          "retina", 
          "tremor", 
          "stimulation", 
          "image stimulation", 
          "firing", 
          "cells", 
          "qualitative changes", 
          "slow speed", 
          "visual perception", 
          "response", 
          "plasticity", 
          "study", 
          "contrast", 
          "changes", 
          "mechanism", 
          "high contrast", 
          "crucial information", 
          "contrast edges", 
          "perception", 
          "knowledge", 
          "time", 
          "movement", 
          "connectivity", 
          "amplitude", 
          "information", 
          "landing time", 
          "range", 
          "coding", 
          "readout", 
          "synchronous regime", 
          "speed", 
          "precision", 
          "kind", 
          "field", 
          "edge", 
          "simulation study", 
          "ms range", 
          "high speed", 
          "weak amplitude", 
          "drift", 
          "regime", 
          "simulations", 
          "numerical simulations", 
          "salient edges", 
          "efficient synchrony-based coding", 
          "synchrony-based coding", 
          "jerking contrast edge", 
          "natural image stimulation", 
          "emitted synchronous spike volley", 
          "most salient edges", 
          "simple coincidence-detector neurons", 
          "MS landing time"
        ], 
        "name": "Microsaccades enable efficient synchrony-based coding in the retina: a simulation study", 
        "pagination": "24086", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021651075"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep24086"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27063867"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep24086", 
          "https://app.dimensions.ai/details/publication/pub.1021651075"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_715.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/srep24086"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep24086'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep24086'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep24086'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep24086'


     

    This table displays all metadata directly associated to this object as RDF triples.

    258 TRIPLES      22 PREDICATES      124 URIs      98 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep24086 schema:about N6d003659388a40e1a2067949a01beff6
    2 Na40308a30803491f899fe70a54bda1af
    3 Nae9522b868334eff9c19ad141bae16a8
    4 Nd7c10501b68f45b2acc18bb5f5418656
    5 Ndfccde0be21043ad97c804903e32a07c
    6 Nf32770d8974649ee91209a38722b0bb7
    7 Nf9c956e233d64963a29ff753a2af7aa9
    8 Nfd76bd8d059e4260a74ec25ab2c0b78d
    9 anzsrc-for:11
    10 anzsrc-for:1109
    11 schema:author Nb5d475e12f834bac9540a8f95608b6ce
    12 schema:citation sg:pub.10.1007/978-3-642-34487-9_8
    13 sg:pub.10.1007/978-3-642-34487-9_81
    14 sg:pub.10.1007/bf00199450
    15 sg:pub.10.1007/bf00961885
    16 sg:pub.10.1007/s10827-008-0108-4
    17 sg:pub.10.1007/s10827-011-0361-9
    18 sg:pub.10.1007/s10827-012-0420-x
    19 sg:pub.10.1023/b:jcns.0000023869.22017.2e
    20 sg:pub.10.1038/14819
    21 sg:pub.10.1038/379728a0
    22 sg:pub.10.1038/72961
    23 sg:pub.10.1038/nn.2663
    24 sg:pub.10.1038/nn1061
    25 sg:pub.10.1038/nn821
    26 sg:pub.10.1038/nrn1348
    27 sg:pub.10.1038/nrn2886
    28 sg:pub.10.1038/nrn3405
    29 sg:pub.10.1186/1744-9081-2-38
    30 schema:datePublished 2016-04-11
    31 schema:datePublishedReg 2016-04-11
    32 schema:description It is now reasonably well established that microsaccades (MS) enhance visual perception, although the underlying neuronal mechanisms are unclear. Here, using numerical simulations, we show that MSs enable efficient synchrony-based coding among the primate retinal ganglion cells (RGC). First, using a jerking contrast edge as stimulus, we demonstrate a qualitative change in the RGC responses: synchronous firing, with a precision in the 10 ms range, only occurs at high speed and high contrast. MSs appear to be sufficiently fast to be able reach the synchronous regime. Conversely, the other kinds of fixational eye movements known as tremor and drift both hardly synchronize RGCs because of a too weak amplitude and a too slow speed respectively. Then, under natural image stimulation, we find that each MS causes certain RGCs to fire synchronously, namely those whose receptive fields contain contrast edges after the MS. The emitted synchronous spike volley thus rapidly transmits the most salient edges of the stimulus, which often constitute the most crucial information. We demonstrate that the readout could be done rapidly by simple coincidence-detector neurons without knowledge of the MS landing time, and that the required connectivity could emerge spontaneously with spike timing-dependent plasticity.
    33 schema:genre article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf Nd69481c6052e42588c9731f8899bd85f
    37 Ne418c7a2873b4facbf291339970fb612
    38 sg:journal.1045337
    39 schema:keywords MS landing time
    40 RGC responses
    41 amplitude
    42 cells
    43 certain retinal ganglion cells
    44 changes
    45 coding
    46 coincidence detector neurons
    47 connectivity
    48 contrast
    49 contrast edges
    50 crucial information
    51 drift
    52 edge
    53 efficient synchrony-based coding
    54 emitted synchronous spike volley
    55 eye movements
    56 field
    57 firing
    58 fixational eye movements
    59 ganglion cells
    60 high contrast
    61 high speed
    62 image stimulation
    63 information
    64 jerking contrast edge
    65 kind
    66 knowledge
    67 landing time
    68 mechanism
    69 microsaccades
    70 most salient edges
    71 movement
    72 ms range
    73 natural image stimulation
    74 neuronal mechanisms
    75 neurons
    76 numerical simulations
    77 perception
    78 plasticity
    79 precision
    80 primate retinal ganglion cells
    81 qualitative changes
    82 range
    83 readout
    84 receptive fields
    85 regime
    86 response
    87 retina
    88 retinal ganglion cells
    89 salient edges
    90 simple coincidence-detector neurons
    91 simulation study
    92 simulations
    93 slow speed
    94 speed
    95 spike volleys
    96 spike-timing dependent plasticity
    97 stimulation
    98 stimuli
    99 study
    100 synchronous firing
    101 synchronous regime
    102 synchronous spike volleys
    103 synchrony-based coding
    104 time
    105 timing-dependent plasticity
    106 tremor
    107 underlying neuronal mechanisms
    108 visual perception
    109 volleys
    110 weak amplitude
    111 schema:name Microsaccades enable efficient synchrony-based coding in the retina: a simulation study
    112 schema:pagination 24086
    113 schema:productId N4c1ccd42a2df422b88a30e2692011e89
    114 N6c141539494543c6bbe1af84f65a0ab1
    115 Nf749075ed7fd4f5386ccfe0edcfe5bb4
    116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021651075
    117 https://doi.org/10.1038/srep24086
    118 schema:sdDatePublished 2022-01-01T18:41
    119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    120 schema:sdPublisher N1b278286859748ada48df1f8d40556ae
    121 schema:url https://doi.org/10.1038/srep24086
    122 sgo:license sg:explorer/license/
    123 sgo:sdDataset articles
    124 rdf:type schema:ScholarlyArticle
    125 N1b278286859748ada48df1f8d40556ae schema:name Springer Nature - SN SciGraph project
    126 rdf:type schema:Organization
    127 N3d59d1c702b84aae9c89fa399e627b51 rdf:first sg:person.010045241071.14
    128 rdf:rest rdf:nil
    129 N4c1ccd42a2df422b88a30e2692011e89 schema:name pubmed_id
    130 schema:value 27063867
    131 rdf:type schema:PropertyValue
    132 N6c141539494543c6bbe1af84f65a0ab1 schema:name dimensions_id
    133 schema:value pub.1021651075
    134 rdf:type schema:PropertyValue
    135 N6d003659388a40e1a2067949a01beff6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Saccades
    137 rdf:type schema:DefinedTerm
    138 Na40308a30803491f899fe70a54bda1af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Photic Stimulation
    140 rdf:type schema:DefinedTerm
    141 Nae9522b868334eff9c19ad141bae16a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Visual Perception
    143 rdf:type schema:DefinedTerm
    144 Nb5d475e12f834bac9540a8f95608b6ce rdf:first sg:person.01271016666.11
    145 rdf:rest Nfbf1c7406b754f478145964a52f520a1
    146 Nd69481c6052e42588c9731f8899bd85f schema:volumeNumber 6
    147 rdf:type schema:PublicationVolume
    148 Nd7c10501b68f45b2acc18bb5f5418656 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Software
    150 rdf:type schema:DefinedTerm
    151 Ndfccde0be21043ad97c804903e32a07c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Eye Movements
    153 rdf:type schema:DefinedTerm
    154 Ne418c7a2873b4facbf291339970fb612 schema:issueNumber 1
    155 rdf:type schema:PublicationIssue
    156 Nf32770d8974649ee91209a38722b0bb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Models, Neurological
    158 rdf:type schema:DefinedTerm
    159 Nf749075ed7fd4f5386ccfe0edcfe5bb4 schema:name doi
    160 schema:value 10.1038/srep24086
    161 rdf:type schema:PropertyValue
    162 Nf9c956e233d64963a29ff753a2af7aa9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Humans
    164 rdf:type schema:DefinedTerm
    165 Nfbf1c7406b754f478145964a52f520a1 rdf:first sg:person.01115333675.35
    166 rdf:rest N3d59d1c702b84aae9c89fa399e627b51
    167 Nfd76bd8d059e4260a74ec25ab2c0b78d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Retinal Ganglion Cells
    169 rdf:type schema:DefinedTerm
    170 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Medical and Health Sciences
    172 rdf:type schema:DefinedTerm
    173 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Neurosciences
    175 rdf:type schema:DefinedTerm
    176 sg:grant.3791326 http://pending.schema.org/fundedItem sg:pub.10.1038/srep24086
    177 rdf:type schema:MonetaryGrant
    178 sg:journal.1045337 schema:issn 2045-2322
    179 schema:name Scientific Reports
    180 schema:publisher Springer Nature
    181 rdf:type schema:Periodical
    182 sg:person.010045241071.14 schema:affiliation grid-institutes:grid.457356.6
    183 schema:familyName Kornprobst
    184 schema:givenName Pierre
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045241071.14
    186 rdf:type schema:Person
    187 sg:person.01115333675.35 schema:affiliation grid-institutes:grid.457356.6
    188 schema:familyName Portelli
    189 schema:givenName Geoffrey
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115333675.35
    191 rdf:type schema:Person
    192 sg:person.01271016666.11 schema:affiliation grid-institutes:grid.4444.0
    193 schema:familyName Masquelier
    194 schema:givenName Timothée
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271016666.11
    196 rdf:type schema:Person
    197 sg:pub.10.1007/978-3-642-34487-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041508101
    198 https://doi.org/10.1007/978-3-642-34487-9_8
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/978-3-642-34487-9_81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028476924
    201 https://doi.org/10.1007/978-3-642-34487-9_81
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/bf00199450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021729724
    204 https://doi.org/10.1007/bf00199450
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/bf00961885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001896844
    207 https://doi.org/10.1007/bf00961885
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s10827-008-0108-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036688865
    210 https://doi.org/10.1007/s10827-008-0108-4
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s10827-011-0361-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046209037
    213 https://doi.org/10.1007/s10827-011-0361-9
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s10827-012-0420-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032082653
    216 https://doi.org/10.1007/s10827-012-0420-x
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1023/b:jcns.0000023869.22017.2e schema:sameAs https://app.dimensions.ai/details/publication/pub.1023383628
    219 https://doi.org/10.1023/b:jcns.0000023869.22017.2e
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/14819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035393709
    222 https://doi.org/10.1038/14819
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/379728a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027817577
    225 https://doi.org/10.1038/379728a0
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/72961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039260162
    228 https://doi.org/10.1038/72961
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nn.2663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044203418
    231 https://doi.org/10.1038/nn.2663
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nn1061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026963541
    234 https://doi.org/10.1038/nn1061
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nn821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039099450
    237 https://doi.org/10.1038/nn821
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nrn1348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009152511
    240 https://doi.org/10.1038/nrn1348
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nrn2886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001312578
    243 https://doi.org/10.1038/nrn2886
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nrn3405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022753206
    246 https://doi.org/10.1038/nrn3405
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1186/1744-9081-2-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007432990
    249 https://doi.org/10.1186/1744-9081-2-38
    250 rdf:type schema:CreativeWork
    251 grid-institutes:grid.4444.0 schema:alternateName CNRS, UMR_7210, Paris, F-75012, France
    252 schema:name CNRS, UMR_7210, Paris, F-75012, France
    253 INSERM, U968, Paris, F-75012, France
    254 Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France
    255 rdf:type schema:Organization
    256 grid-institutes:grid.457356.6 schema:alternateName Biovision Team, Inria Sophia Antipolis Méditerranée, 06902, France
    257 schema:name Biovision Team, Inria Sophia Antipolis Méditerranée, 06902, France
    258 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...