Geographically Sourcing Cocaine’s Origin – Delineation of the Nineteen Major Coca Growing Regions in South America View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09

AUTHORS

Jennifer R. Mallette, John F. Casale, James Jordan, David R. Morello, Paul M. Beyer

ABSTRACT

Previously, geo-sourcing to five major coca growing regions within South America was accomplished. However, the expansion of coca cultivation throughout South America made sub-regional origin determinations increasingly difficult. The former methodology was recently enhanced with additional stable isotope analyses ((2)H and (18)O) to fully characterize cocaine due to the varying environmental conditions in which the coca was grown. An improved data analysis method was implemented with the combination of machine learning and multivariate statistical analysis methods to provide further partitioning between growing regions. Here, we show how the combination of trace cocaine alkaloids, stable isotopes, and multivariate statistical analyses can be used to classify illicit cocaine as originating from one of 19 growing regions within South America. The data obtained through this approach can be used to describe current coca cultivation and production trends, highlight trafficking routes, as well as identify new coca growing regions. More... »

PAGES

23520

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep23520

DOI

http://dx.doi.org/10.1038/srep23520

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042060232

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27006288


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alkaloids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coca", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Deuterium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen Isotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "South America", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Drug Enforcement Administration", 
          "id": "https://www.grid.ac/institutes/grid.484223.b", 
          "name": [
            "U.S. Drug Enforcement Administration, Special Testing and Research Laboratory, Dulles, VA 20166 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mallette", 
        "givenName": "Jennifer R.", 
        "id": "sg:person.01106475164.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106475164.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drug Enforcement Administration", 
          "id": "https://www.grid.ac/institutes/grid.484223.b", 
          "name": [
            "U.S. Drug Enforcement Administration, Special Testing and Research Laboratory, Dulles, VA 20166 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casale", 
        "givenName": "John F.", 
        "id": "sg:person.01050542426.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050542426.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Geospatial-Intelligence Agency", 
          "id": "https://www.grid.ac/institutes/grid.462540.1", 
          "name": [
            "National Geospatial Intelligence Agency, Springfield, VA 20150 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jordan", 
        "givenName": "James", 
        "id": "sg:person.01343404673.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343404673.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drug Enforcement Administration", 
          "id": "https://www.grid.ac/institutes/grid.484223.b", 
          "name": [
            "U.S. Drug Enforcement Administration, Special Testing and Research Laboratory, Dulles, VA 20166 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morello", 
        "givenName": "David R.", 
        "id": "sg:person.01230550133.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230550133.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "U.S. Drug Enforcement Administration, Intelligence Division, Arlington, VA 22202 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beyer", 
        "givenName": "Paul M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0169-7439(01)00156-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003811073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2004.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004025931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(96)00651-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005448190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00380063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008002518", 
          "https://doi.org/10.1007/bf00380063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00380063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008002518", 
          "https://doi.org/10.1007/bf00380063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2006.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008342814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011951320", 
          "https://doi.org/10.1038/35042680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011951320", 
          "https://doi.org/10.1038/35042680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01007573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012819650", 
          "https://doi.org/10.1007/bf01007573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2014.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013375224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1936-7961(07)00004-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016836693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004420050865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017960041", 
          "https://doi.org/10.1007/s004420050865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/363439a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024471890", 
          "https://doi.org/10.1038/363439a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pp.40.060189.002443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024932147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420035636.ch5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025337707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00328400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030820689", 
          "https://doi.org/10.1007/bf00328400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2007.897478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030866063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031839951", 
          "https://doi.org/10.1186/1471-2105-9-106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0379-0738(94)90046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040169105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gexplo.2009.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041394018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2795(75)90109-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042105629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2795(75)90109-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042105629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006100128782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043193141", 
          "https://doi.org/10.1023/a:1006100128782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-7037(99)00195-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045393063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/15718085-12341263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046216428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/15718085-12341263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046216428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9673(94)85224-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049350781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00397870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050761212", 
          "https://doi.org/10.1007/bf00397870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00397870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050761212", 
          "https://doi.org/10.1007/bf00397870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0379-0738(94)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051044260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.2611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052232704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5453.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/jfs2005077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067619287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bk-2015-1199.ch007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074222714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/jfs13253j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076807343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079130287", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079133663", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079133722", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/jfs12475j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079716369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082519753", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/jfs13126j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090258158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/jfs13154j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090258236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118914564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107027575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109726915", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b10434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109726915"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "Previously, geo-sourcing to five major coca growing regions within South America was accomplished. However, the expansion of coca cultivation throughout South America made sub-regional origin determinations increasingly difficult. The former methodology was recently enhanced with additional stable isotope analyses ((2)H and (18)O) to fully characterize cocaine due to the varying environmental conditions in which the coca was grown. An improved data analysis method was implemented with the combination of machine learning and multivariate statistical analysis methods to provide further partitioning between growing regions. Here, we show how the combination of trace cocaine alkaloids, stable isotopes, and multivariate statistical analyses can be used to classify illicit cocaine as originating from one of 19 growing regions within South America. The data obtained through this approach can be used to describe current coca cultivation and production trends, highlight trafficking routes, as well as identify new coca growing regions. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep23520", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Geographically Sourcing Cocaine\u2019s Origin \u2013 Delineation of the Nineteen Major Coca Growing Regions in South America", 
    "pagination": "23520", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c85a982b88b165624a55687cdaad03a1314de779d0d7bc8b8d1946e566ae5661"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27006288"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep23520"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042060232"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep23520", 
      "https://app.dimensions.ai/details/publication/pub.1042060232"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000592.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/srep23520"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep23520'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep23520'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep23520'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep23520'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      77 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep23520 schema:about N5cad8e2d2dad4a32b950649e8a7f58a4
2 N5e9c6c8bcecc4320947159eac44b8a4f
3 N828ec234f4bf411485a4138d264af95f
4 N99b0eaaa491f4354922f347587f7734b
5 Nada78f39e38b47618f1d97c9d5e9ae53
6 Nc4697e70b16247f2a3a8094ab9b2b625
7 Nd9e86c67bf614c3e8bba85bd369a1212
8 Nee61c29fb24b4fa0a2ca556bc5b6359b
9 anzsrc-for:01
10 anzsrc-for:0104
11 schema:author N157fca0fff844a148e129308059266dd
12 schema:citation sg:pub.10.1007/bf00328400
13 sg:pub.10.1007/bf00380063
14 sg:pub.10.1007/bf00397870
15 sg:pub.10.1007/bf01007573
16 sg:pub.10.1007/s004420050865
17 sg:pub.10.1023/a:1006100128782
18 sg:pub.10.1038/35042680
19 sg:pub.10.1038/363439a0
20 sg:pub.10.1186/1471-2105-9-106
21 https://app.dimensions.ai/details/publication/pub.1079130287
22 https://app.dimensions.ai/details/publication/pub.1079133663
23 https://app.dimensions.ai/details/publication/pub.1079133722
24 https://app.dimensions.ai/details/publication/pub.1082519753
25 https://app.dimensions.ai/details/publication/pub.1109726915
26 https://doi.org/10.1002/9781118914564
27 https://doi.org/10.1002/cem.2611
28 https://doi.org/10.1016/0005-2795(75)90109-9
29 https://doi.org/10.1016/0021-9673(94)85224-3
30 https://doi.org/10.1016/0379-0738(94)90043-4
31 https://doi.org/10.1016/0379-0738(94)90046-9
32 https://doi.org/10.1016/j.cageo.2004.11.013
33 https://doi.org/10.1016/j.forsciint.2014.01.012
34 https://doi.org/10.1016/j.gexplo.2009.05.001
35 https://doi.org/10.1016/j.tree.2006.04.002
36 https://doi.org/10.1016/s0016-7037(99)00195-7
37 https://doi.org/10.1016/s0021-9673(96)00651-6
38 https://doi.org/10.1016/s0169-7439(01)00156-3
39 https://doi.org/10.1016/s1936-7961(07)00004-8
40 https://doi.org/10.1021/bk-2015-1199.ch007
41 https://doi.org/10.1109/tnn.2007.897478
42 https://doi.org/10.1126/science.287.5453.631
43 https://doi.org/10.1146/annurev.pp.40.060189.002443
44 https://doi.org/10.1163/15718085-12341263
45 https://doi.org/10.1201/9781420035636.ch5
46 https://doi.org/10.1201/b10434
47 https://doi.org/10.1520/jfs12475j
48 https://doi.org/10.1520/jfs13126j
49 https://doi.org/10.1520/jfs13154j
50 https://doi.org/10.1520/jfs13253j
51 https://doi.org/10.1520/jfs2005077
52 schema:datePublished 2016-09
53 schema:datePublishedReg 2016-09-01
54 schema:description Previously, geo-sourcing to five major coca growing regions within South America was accomplished. However, the expansion of coca cultivation throughout South America made sub-regional origin determinations increasingly difficult. The former methodology was recently enhanced with additional stable isotope analyses ((2)H and (18)O) to fully characterize cocaine due to the varying environmental conditions in which the coca was grown. An improved data analysis method was implemented with the combination of machine learning and multivariate statistical analysis methods to provide further partitioning between growing regions. Here, we show how the combination of trace cocaine alkaloids, stable isotopes, and multivariate statistical analyses can be used to classify illicit cocaine as originating from one of 19 growing regions within South America. The data obtained through this approach can be used to describe current coca cultivation and production trends, highlight trafficking routes, as well as identify new coca growing regions.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf Ne6e47a18c62e4380bf1a7cd5072563be
59 Nff4a5180432942c59b71321e282ae153
60 sg:journal.1045337
61 schema:name Geographically Sourcing Cocaine’s Origin – Delineation of the Nineteen Major Coca Growing Regions in South America
62 schema:pagination 23520
63 schema:productId N056b55c7799f45e79f70adb42d5b0037
64 N561dd54da7994595979c504ca08eaba8
65 N63718253ab6c479d8931d9ec1cd6271b
66 Nd8b4f430afbd4107ae6298ea82afb21d
67 Ndf4a096f78124d8198ea2096b93b4e0d
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042060232
69 https://doi.org/10.1038/srep23520
70 schema:sdDatePublished 2019-04-10T22:45
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N42faa82815264fc68c5c8c5ac82d30f3
73 schema:url http://www.nature.com/articles/srep23520
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N00e3cc3177d24e62bbff84f22d7513b0 schema:name U.S. Drug Enforcement Administration, Intelligence Division, Arlington, VA 22202 USA
78 rdf:type schema:Organization
79 N02d99c430af546e6be099f45e1999e66 rdf:first sg:person.01230550133.70
80 rdf:rest N036fa9a68c594987a7ed545c3be1d3c1
81 N036fa9a68c594987a7ed545c3be1d3c1 rdf:first N1194d78851ba45c8bee22c6aac355ace
82 rdf:rest rdf:nil
83 N056b55c7799f45e79f70adb42d5b0037 schema:name pubmed_id
84 schema:value 27006288
85 rdf:type schema:PropertyValue
86 N1194d78851ba45c8bee22c6aac355ace schema:affiliation N00e3cc3177d24e62bbff84f22d7513b0
87 schema:familyName Beyer
88 schema:givenName Paul M.
89 rdf:type schema:Person
90 N157fca0fff844a148e129308059266dd rdf:first sg:person.01106475164.30
91 rdf:rest N8066e7d2cd254cf1bc130777ff44d2e6
92 N42faa82815264fc68c5c8c5ac82d30f3 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N561dd54da7994595979c504ca08eaba8 schema:name readcube_id
95 schema:value c85a982b88b165624a55687cdaad03a1314de779d0d7bc8b8d1946e566ae5661
96 rdf:type schema:PropertyValue
97 N5cad8e2d2dad4a32b950649e8a7f58a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Mass Spectrometry
99 rdf:type schema:DefinedTerm
100 N5e9c6c8bcecc4320947159eac44b8a4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name South America
102 rdf:type schema:DefinedTerm
103 N63718253ab6c479d8931d9ec1cd6271b schema:name dimensions_id
104 schema:value pub.1042060232
105 rdf:type schema:PropertyValue
106 N8066e7d2cd254cf1bc130777ff44d2e6 rdf:first sg:person.01050542426.32
107 rdf:rest Ne329c47fa4b04cbe9968f507ac14a834
108 N828ec234f4bf411485a4138d264af95f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Machine Learning
110 rdf:type schema:DefinedTerm
111 N99b0eaaa491f4354922f347587f7734b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Coca
113 rdf:type schema:DefinedTerm
114 Nada78f39e38b47618f1d97c9d5e9ae53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Alkaloids
116 rdf:type schema:DefinedTerm
117 Nc4697e70b16247f2a3a8094ab9b2b625 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Deuterium
119 rdf:type schema:DefinedTerm
120 Nd8b4f430afbd4107ae6298ea82afb21d schema:name doi
121 schema:value 10.1038/srep23520
122 rdf:type schema:PropertyValue
123 Nd9e86c67bf614c3e8bba85bd369a1212 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Oxygen Isotopes
125 rdf:type schema:DefinedTerm
126 Ndf4a096f78124d8198ea2096b93b4e0d schema:name nlm_unique_id
127 schema:value 101563288
128 rdf:type schema:PropertyValue
129 Ne329c47fa4b04cbe9968f507ac14a834 rdf:first sg:person.01343404673.60
130 rdf:rest N02d99c430af546e6be099f45e1999e66
131 Ne6e47a18c62e4380bf1a7cd5072563be schema:issueNumber 1
132 rdf:type schema:PublicationIssue
133 Nee61c29fb24b4fa0a2ca556bc5b6359b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Phylogeography
135 rdf:type schema:DefinedTerm
136 Nff4a5180432942c59b71321e282ae153 schema:volumeNumber 6
137 rdf:type schema:PublicationVolume
138 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
139 schema:name Mathematical Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
142 schema:name Statistics
143 rdf:type schema:DefinedTerm
144 sg:journal.1045337 schema:issn 2045-2322
145 schema:name Scientific Reports
146 rdf:type schema:Periodical
147 sg:person.01050542426.32 schema:affiliation https://www.grid.ac/institutes/grid.484223.b
148 schema:familyName Casale
149 schema:givenName John F.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050542426.32
151 rdf:type schema:Person
152 sg:person.01106475164.30 schema:affiliation https://www.grid.ac/institutes/grid.484223.b
153 schema:familyName Mallette
154 schema:givenName Jennifer R.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106475164.30
156 rdf:type schema:Person
157 sg:person.01230550133.70 schema:affiliation https://www.grid.ac/institutes/grid.484223.b
158 schema:familyName Morello
159 schema:givenName David R.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230550133.70
161 rdf:type schema:Person
162 sg:person.01343404673.60 schema:affiliation https://www.grid.ac/institutes/grid.462540.1
163 schema:familyName Jordan
164 schema:givenName James
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343404673.60
166 rdf:type schema:Person
167 sg:pub.10.1007/bf00328400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030820689
168 https://doi.org/10.1007/bf00328400
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/bf00380063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008002518
171 https://doi.org/10.1007/bf00380063
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/bf00397870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050761212
174 https://doi.org/10.1007/bf00397870
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/bf01007573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012819650
177 https://doi.org/10.1007/bf01007573
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s004420050865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017960041
180 https://doi.org/10.1007/s004420050865
181 rdf:type schema:CreativeWork
182 sg:pub.10.1023/a:1006100128782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043193141
183 https://doi.org/10.1023/a:1006100128782
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/35042680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011951320
186 https://doi.org/10.1038/35042680
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/363439a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024471890
189 https://doi.org/10.1038/363439a0
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/1471-2105-9-106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031839951
192 https://doi.org/10.1186/1471-2105-9-106
193 rdf:type schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1079130287 schema:CreativeWork
195 https://app.dimensions.ai/details/publication/pub.1079133663 schema:CreativeWork
196 https://app.dimensions.ai/details/publication/pub.1079133722 schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1082519753 schema:CreativeWork
198 https://app.dimensions.ai/details/publication/pub.1109726915 schema:CreativeWork
199 https://doi.org/10.1002/9781118914564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107027575
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/cem.2611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052232704
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/0005-2795(75)90109-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042105629
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/0021-9673(94)85224-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049350781
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/0379-0738(94)90043-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051044260
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/0379-0738(94)90046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040169105
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.cageo.2004.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004025931
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.forsciint.2014.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013375224
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.gexplo.2009.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041394018
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.tree.2006.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008342814
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/s0016-7037(99)00195-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045393063
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/s0021-9673(96)00651-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005448190
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/s0169-7439(01)00156-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003811073
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/s1936-7961(07)00004-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016836693
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1021/bk-2015-1199.ch007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074222714
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1109/tnn.2007.897478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030866063
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.287.5453.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568168
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1146/annurev.pp.40.060189.002443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024932147
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1163/15718085-12341263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046216428
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1201/9781420035636.ch5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025337707
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1201/b10434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109726915
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1520/jfs12475j schema:sameAs https://app.dimensions.ai/details/publication/pub.1079716369
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1520/jfs13126j schema:sameAs https://app.dimensions.ai/details/publication/pub.1090258158
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1520/jfs13154j schema:sameAs https://app.dimensions.ai/details/publication/pub.1090258236
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1520/jfs13253j schema:sameAs https://app.dimensions.ai/details/publication/pub.1076807343
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1520/jfs2005077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067619287
250 rdf:type schema:CreativeWork
251 https://www.grid.ac/institutes/grid.462540.1 schema:alternateName National Geospatial-Intelligence Agency
252 schema:name National Geospatial Intelligence Agency, Springfield, VA 20150 USA
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.484223.b schema:alternateName Drug Enforcement Administration
255 schema:name U.S. Drug Enforcement Administration, Special Testing and Research Laboratory, Dulles, VA 20166 USA
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...