Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03-01

AUTHORS

Yoon Young Choi, Jae Eun Lee, Hyunki Kim, Moon Hee Sim, Ka-Kyung Kim, Gunho Lee, Hyoung-Il Kim, Ji Yeong An, Woo Jin Hyung, Choong-Bai Kim, Sung Hoon Noh, Sangwoo Kim, Jae-Ho Cheong

ABSTRACT

The patient-derived xenograft (PDX) model is emerging as a promising translational platform to duplicate the characteristics of tumours. However, few studies have reported detailed histological and genomic analyses for model fidelity and for factors affecting successful model establishment of gastric cancer. Here, we generated PDX tumours surgically-derived from 62 gastric cancer patients. Fifteen PDX models were successfully established (24.2%, 15/62) and passaged to maintain tumours in immune-compromised mice. Diffuse type and low tumour cell percentage were negatively correlated with success rates (p = 0.005 and p = 0.025, respectively), while reducing ex vivo and overall procedure times were positively correlated with success rates (p = 0.003 and p = 0.01, respectively). The histology and genetic characteristics of PDX tumour models were stable over subsequent passages. Lymphoma transformation occurred in five cases (33.3%, 5/15), and all were in the NOG mouse, with none in the nude mouse. Together, the present study identified Lauren classification, tumour cell percentages, and ex vivo times along with overall procedure times, as key determinants for successful PDX engraftment. Furthermore, genetic and histological characteristics were highly consistent between primary and PDX tumours, which provide realistic paraclinical models, enabling personalised development of treatment options for gastric cancer. More... »

PAGES

22172

References to SciGraph publications

  • 2013-02-10. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples in NATURE BIOTECHNOLOGY
  • 2015-02-18. Intramuscular Transplantation Improves Engraftment Rates for Esophageal Patient-Derived Tumor Xenografts in ANNALS OF SURGICAL ONCOLOGY
  • 1985. Development of Three Human Small Cell Lung Cancer Models in Nude Mice in SMALL CELL LUNG CANCER
  • 2015-03-30. The extent of inflammatory infiltration in primary cancer tissues is associated with lymphomagenesis in immunodeficient mice in SCIENTIFIC REPORTS
  • 2012-04-17. Patient-derived tumour xenografts as models for oncology drug development in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2011-10-23. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes in NATURE MEDICINE
  • 2001-05-15. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials in BRITISH JOURNAL OF CANCER
  • 2013-02-11. Primary esophageal and gastro-esophageal junction cancer xenograft models: clinicopathological features and engraftment in LABORATORY INVESTIGATION
  • 2014-12-23. Are special read alignment strategies necessary and cost-effective when handling sequencing reads from patient-derived tumor xenografts? in BMC GENOMICS
  • 2015-02-25. Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer in SCIENTIFIC REPORTS
  • 2012-01-16. Molecular profiling of patient-derived breast cancer xenografts in BREAST CANCER RESEARCH
  • 2015-04-20. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes in NATURE MEDICINE
  • 2013-08-29. Virmid: accurate detection of somatic mutations with sample impurity inference in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep22172

    DOI

    http://dx.doi.org/10.1038/srep22172

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036369930

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26926953


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Models, Animal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heterografts", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunohistochemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Nude", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Grading", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Staging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stomach Neoplasms", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.", 
                "Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choi", 
            "givenName": "Yoon Young", 
            "id": "sg:person.01232736736.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232736736.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.", 
                "Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Jae Eun", 
            "id": "sg:person.0600260253.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600260253.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Pathology, Yonsei University College of Medicine, Seoul, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Hyunki", 
            "id": "sg:person.01061166771.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061166771.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.", 
                "Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sim", 
            "givenName": "Moon Hee", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Ka-Kyung", 
            "id": "sg:person.0762622053.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762622053.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Gunho", 
            "id": "sg:person.01030735253.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030735253.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Surgery, Yonsei University College of Medicine, Seoul, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Hyoung-Il", 
            "id": "sg:person.01206477346.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206477346.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.414964.a", 
              "name": [
                "Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.", 
                "Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "An", 
            "givenName": "Ji Yeong", 
            "id": "sg:person.0621606620.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621606620.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Surgery, Yonsei University College of Medicine, Seoul, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hyung", 
            "givenName": "Woo Jin", 
            "id": "sg:person.01301476544.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301476544.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Surgery, Yonsei University College of Medicine, Seoul, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Choong-Bai", 
            "id": "sg:person.0577625106.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577625106.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.", 
                "Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Noh", 
            "givenName": "Sung Hoon", 
            "id": "sg:person.01120377020.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120377020.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Sangwoo", 
            "id": "sg:person.014264770007.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264770007.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Open NBI Convergence Technology Research Laboratory of Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.", 
                "Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea.", 
                "Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.", 
                "Department of Biochemistry &Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.", 
                "Open NBI Convergence Technology Research Laboratory of Department of Surgery, Yonsei University College of Medicine, Seoul, Korea."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheong", 
            "givenName": "Jae-Ho", 
            "id": "sg:person.0576310512.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576310512.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt.2514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000477771", 
              "https://doi.org/10.1038/nbt.2514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.2454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044243050", 
              "https://doi.org/10.1038/nm.2454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/labinvest.2013.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038322655", 
              "https://doi.org/10.1038/labinvest.2013.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-015-4425-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036044363", 
              "https://doi.org/10.1245/s10434-015-4425-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3850", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002173905", 
              "https://doi.org/10.1038/nm.3850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-1172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010519837", 
              "https://doi.org/10.1186/1471-2164-15-1172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep09447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008272966", 
              "https://doi.org/10.1038/srep09447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep08542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012144080", 
              "https://doi.org/10.1038/srep08542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1054/bjoc.2001.1796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026993418", 
              "https://doi.org/10.1054/bjoc.2001.1796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-82372-5_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038329908", 
              "https://doi.org/10.1007/978-3-642-82372-5_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr3095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014060180", 
              "https://doi.org/10.1186/bcr3095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-8-r90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050944554", 
              "https://doi.org/10.1186/gb-2013-14-8-r90"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2012.61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013064241", 
              "https://doi.org/10.1038/nrclinonc.2012.61"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-03-01", 
        "datePublishedReg": "2016-03-01", 
        "description": "The patient-derived xenograft (PDX) model is emerging as a promising translational platform to duplicate the characteristics of tumours. However, few studies have reported detailed histological and genomic analyses for model fidelity and for factors affecting successful model establishment of gastric cancer. Here, we generated PDX tumours surgically-derived from 62 gastric cancer patients. Fifteen PDX models were successfully established (24.2%, 15/62) and passaged to maintain tumours in immune-compromised mice. Diffuse type and low tumour cell percentage were negatively correlated with success rates (p\u2009=\u20090.005 and p\u2009=\u20090.025, respectively), while reducing ex vivo and overall procedure times were positively correlated with success rates (p\u2009=\u20090.003 and p\u2009=\u20090.01, respectively). The histology and genetic characteristics of PDX tumour models were stable over subsequent passages. Lymphoma transformation occurred in five cases (33.3%, 5/15), and all were in the NOG mouse, with none in the nude mouse. Together, the present study identified Lauren classification, tumour cell percentages, and ex vivo times along with overall procedure times, as key determinants for successful PDX engraftment. Furthermore, genetic and histological characteristics were highly consistent between primary and PDX tumours, which provide realistic paraclinical models, enabling personalised development of treatment options for gastric cancer. ", 
        "genre": "article", 
        "id": "sg:pub.10.1038/srep22172", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "overall procedure time", 
          "tumor cell percentage", 
          "gastric cancer", 
          "PDX tumors", 
          "cell percentage", 
          "procedure time", 
          "patient-derived xenograft models", 
          "successful PDX engraftment", 
          "gastric cancer patients", 
          "successful model establishment", 
          "PDX tumor models", 
          "success rate", 
          "patient-derived xenografts", 
          "immune-compromised mice", 
          "characteristics of tumors", 
          "PDX engraftment", 
          "NOG mice", 
          "cancer patients", 
          "PDX models", 
          "treatment options", 
          "lymphoma transformation", 
          "Lauren classification", 
          "xenograft model", 
          "histological characteristics", 
          "nude mice", 
          "diffuse type", 
          "tumor model", 
          "tumors", 
          "translational platform", 
          "cancer", 
          "mice", 
          "subsequent passages", 
          "present study", 
          "genetic characteristics", 
          "patients", 
          "engraftment", 
          "xenografts", 
          "histology", 
          "model establishment", 
          "percentage", 
          "key determinant", 
          "vivo", 
          "study", 
          "rate", 
          "ex", 
          "options", 
          "genomic analysis", 
          "determinants", 
          "time", 
          "factors", 
          "cases", 
          "characteristics", 
          "establishment", 
          "development", 
          "model", 
          "passage", 
          "classification", 
          "types", 
          "analysis", 
          "characterisation", 
          "model fidelity", 
          "fidelity", 
          "platform", 
          "transformation", 
          "promising translational platform", 
          "low tumour cell percentage", 
          "realistic paraclinical models", 
          "paraclinical models"
        ], 
        "name": "Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer", 
        "pagination": "22172", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036369930"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep22172"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26926953"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep22172", 
          "https://app.dimensions.ai/details/publication/pub.1036369930"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_690.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/srep22172"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep22172'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep22172'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep22172'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep22172'


     

    This table displays all metadata directly associated to this object as RDF triples.

    339 TRIPLES      22 PREDICATES      122 URIs      101 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep22172 schema:about N22dfc68288c14de98a502e6d98f50686
    2 N24d336760cdb468ea1118d793d497723
    3 N2adf7fc94f714531a4ea07875359c7cd
    4 N4ccb1bd263f045529417c948c084ba70
    5 N51f1cafab9ef4ef99aaac89a750e0b8d
    6 N68cff3ca135840348fd654f842213edd
    7 N8226a8af4eae48b989cb2f94cd61002f
    8 N87314315d54c40c39f134601e4bd5e2d
    9 N906fc7f61fef4951bf720cf9de71de97
    10 N9a27cfe25340407391c8d8ba098ed478
    11 Na481992ea14e4f4699ff1958ce283950
    12 Nb30397588f2b4aa997b4c0fee203738c
    13 Nb535da62596749398dce314a90883109
    14 Nca36c77a0aea48508bb32439fe99de9e
    15 Nfa84aa5b6079422fa87c4d891ec2910e
    16 anzsrc-for:11
    17 anzsrc-for:1112
    18 schema:author N2c05c99a69134fca805f974dd5cb2dfa
    19 schema:citation sg:pub.10.1007/978-3-642-82372-5_8
    20 sg:pub.10.1038/labinvest.2013.8
    21 sg:pub.10.1038/nbt.2514
    22 sg:pub.10.1038/nm.2454
    23 sg:pub.10.1038/nm.3850
    24 sg:pub.10.1038/nrclinonc.2012.61
    25 sg:pub.10.1038/srep08542
    26 sg:pub.10.1038/srep09447
    27 sg:pub.10.1054/bjoc.2001.1796
    28 sg:pub.10.1186/1471-2164-15-1172
    29 sg:pub.10.1186/bcr3095
    30 sg:pub.10.1186/gb-2013-14-8-r90
    31 sg:pub.10.1245/s10434-015-4425-3
    32 schema:datePublished 2016-03-01
    33 schema:datePublishedReg 2016-03-01
    34 schema:description The patient-derived xenograft (PDX) model is emerging as a promising translational platform to duplicate the characteristics of tumours. However, few studies have reported detailed histological and genomic analyses for model fidelity and for factors affecting successful model establishment of gastric cancer. Here, we generated PDX tumours surgically-derived from 62 gastric cancer patients. Fifteen PDX models were successfully established (24.2%, 15/62) and passaged to maintain tumours in immune-compromised mice. Diffuse type and low tumour cell percentage were negatively correlated with success rates (p = 0.005 and p = 0.025, respectively), while reducing ex vivo and overall procedure times were positively correlated with success rates (p = 0.003 and p = 0.01, respectively). The histology and genetic characteristics of PDX tumour models were stable over subsequent passages. Lymphoma transformation occurred in five cases (33.3%, 5/15), and all were in the NOG mouse, with none in the nude mouse. Together, the present study identified Lauren classification, tumour cell percentages, and ex vivo times along with overall procedure times, as key determinants for successful PDX engraftment. Furthermore, genetic and histological characteristics were highly consistent between primary and PDX tumours, which provide realistic paraclinical models, enabling personalised development of treatment options for gastric cancer.
    35 schema:genre article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N2648287bebab43ee808d1b9425d72ae0
    39 Nf8e278b3631647db8d332524ac90b314
    40 sg:journal.1045337
    41 schema:keywords Lauren classification
    42 NOG mice
    43 PDX engraftment
    44 PDX models
    45 PDX tumor models
    46 PDX tumors
    47 analysis
    48 cancer
    49 cancer patients
    50 cases
    51 cell percentage
    52 characterisation
    53 characteristics
    54 characteristics of tumors
    55 classification
    56 determinants
    57 development
    58 diffuse type
    59 engraftment
    60 establishment
    61 ex
    62 factors
    63 fidelity
    64 gastric cancer
    65 gastric cancer patients
    66 genetic characteristics
    67 genomic analysis
    68 histological characteristics
    69 histology
    70 immune-compromised mice
    71 key determinant
    72 low tumour cell percentage
    73 lymphoma transformation
    74 mice
    75 model
    76 model establishment
    77 model fidelity
    78 nude mice
    79 options
    80 overall procedure time
    81 paraclinical models
    82 passage
    83 patient-derived xenograft models
    84 patient-derived xenografts
    85 patients
    86 percentage
    87 platform
    88 present study
    89 procedure time
    90 promising translational platform
    91 rate
    92 realistic paraclinical models
    93 study
    94 subsequent passages
    95 success rate
    96 successful PDX engraftment
    97 successful model establishment
    98 time
    99 transformation
    100 translational platform
    101 treatment options
    102 tumor cell percentage
    103 tumor model
    104 tumors
    105 types
    106 vivo
    107 xenograft model
    108 xenografts
    109 schema:name Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer
    110 schema:pagination 22172
    111 schema:productId N4312c451542847fca44db6b2b4afad11
    112 N56241cfd57f44b7aa7c3146b00ec5cc1
    113 N8a08ad74a13c4ad09d63aa60e95f4191
    114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036369930
    115 https://doi.org/10.1038/srep22172
    116 schema:sdDatePublished 2022-01-01T18:40
    117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    118 schema:sdPublisher N70240ff019fb48d4a2fdb5cbccf99fd9
    119 schema:url https://doi.org/10.1038/srep22172
    120 sgo:license sg:explorer/license/
    121 sgo:sdDataset articles
    122 rdf:type schema:ScholarlyArticle
    123 N04558289a0fb472da94bea564d316551 rdf:first sg:person.01206477346.19
    124 rdf:rest N216f598115a547acaafe39126505bcc6
    125 N216f598115a547acaafe39126505bcc6 rdf:first sg:person.0621606620.30
    126 rdf:rest N5d42eae34ff348109c53e4e6f4b1207a
    127 N22dfc68288c14de98a502e6d98f50686 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Neoplasm Grading
    129 rdf:type schema:DefinedTerm
    130 N248ec072aaf2459899bb8100ff1288e5 rdf:first sg:person.01030735253.10
    131 rdf:rest N04558289a0fb472da94bea564d316551
    132 N24d336760cdb468ea1118d793d497723 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Genomics
    134 rdf:type schema:DefinedTerm
    135 N2648287bebab43ee808d1b9425d72ae0 schema:issueNumber 1
    136 rdf:type schema:PublicationIssue
    137 N2adf7fc94f714531a4ea07875359c7cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Neoplasm Staging
    139 rdf:type schema:DefinedTerm
    140 N2c05c99a69134fca805f974dd5cb2dfa rdf:first sg:person.01232736736.20
    141 rdf:rest N71da3d923b0b43caafd3b6d95d76f40b
    142 N396b3ce142d7434784d711370af507cc schema:affiliation grid-institutes:grid.15444.30
    143 schema:familyName Sim
    144 schema:givenName Moon Hee
    145 rdf:type schema:Person
    146 N427bb53248a049a2938ae9227bca5192 rdf:first sg:person.0576310512.26
    147 rdf:rest rdf:nil
    148 N4312c451542847fca44db6b2b4afad11 schema:name pubmed_id
    149 schema:value 26926953
    150 rdf:type schema:PropertyValue
    151 N4ccb1bd263f045529417c948c084ba70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Immunohistochemistry
    153 rdf:type schema:DefinedTerm
    154 N51f1cafab9ef4ef99aaac89a750e0b8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Mice, Nude
    156 rdf:type schema:DefinedTerm
    157 N56241cfd57f44b7aa7c3146b00ec5cc1 schema:name dimensions_id
    158 schema:value pub.1036369930
    159 rdf:type schema:PropertyValue
    160 N58973c4b1b0e4f5ea4bf196caa0a0949 rdf:first N396b3ce142d7434784d711370af507cc
    161 rdf:rest Nb0423f2781734ca1b8e0aee7a0739b84
    162 N5d42eae34ff348109c53e4e6f4b1207a rdf:first sg:person.01301476544.74
    163 rdf:rest N8f4395b051f847a3986ce3c296a08217
    164 N68cff3ca135840348fd654f842213edd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Disease Models, Animal
    166 rdf:type schema:DefinedTerm
    167 N70240ff019fb48d4a2fdb5cbccf99fd9 schema:name Springer Nature - SN SciGraph project
    168 rdf:type schema:Organization
    169 N71da3d923b0b43caafd3b6d95d76f40b rdf:first sg:person.0600260253.28
    170 rdf:rest N76fb09fc39074af1825c68a01a6852ad
    171 N76fb09fc39074af1825c68a01a6852ad rdf:first sg:person.01061166771.52
    172 rdf:rest N58973c4b1b0e4f5ea4bf196caa0a0949
    173 N8226a8af4eae48b989cb2f94cd61002f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Heterografts
    175 rdf:type schema:DefinedTerm
    176 N87314315d54c40c39f134601e4bd5e2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Exome
    178 rdf:type schema:DefinedTerm
    179 N8a08ad74a13c4ad09d63aa60e95f4191 schema:name doi
    180 schema:value 10.1038/srep22172
    181 rdf:type schema:PropertyValue
    182 N8f4395b051f847a3986ce3c296a08217 rdf:first sg:person.0577625106.44
    183 rdf:rest Ne5405a16d70c4532a20a3b0302741c22
    184 N906fc7f61fef4951bf720cf9de71de97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Stomach Neoplasms
    186 rdf:type schema:DefinedTerm
    187 N9a27cfe25340407391c8d8ba098ed478 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Female
    189 rdf:type schema:DefinedTerm
    190 Na481992ea14e4f4699ff1958ce283950 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Humans
    192 rdf:type schema:DefinedTerm
    193 Nb0423f2781734ca1b8e0aee7a0739b84 rdf:first sg:person.0762622053.46
    194 rdf:rest N248ec072aaf2459899bb8100ff1288e5
    195 Nb30397588f2b4aa997b4c0fee203738c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Animals
    197 rdf:type schema:DefinedTerm
    198 Nb535da62596749398dce314a90883109 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Mice
    200 rdf:type schema:DefinedTerm
    201 Nca36c77a0aea48508bb32439fe99de9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Male
    203 rdf:type schema:DefinedTerm
    204 Ne5405a16d70c4532a20a3b0302741c22 rdf:first sg:person.01120377020.04
    205 rdf:rest Necdb12841854478793a87f47db6927b6
    206 Necdb12841854478793a87f47db6927b6 rdf:first sg:person.014264770007.26
    207 rdf:rest N427bb53248a049a2938ae9227bca5192
    208 Nf8e278b3631647db8d332524ac90b314 schema:volumeNumber 6
    209 rdf:type schema:PublicationVolume
    210 Nfa84aa5b6079422fa87c4d891ec2910e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name High-Throughput Nucleotide Sequencing
    212 rdf:type schema:DefinedTerm
    213 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    214 schema:name Medical and Health Sciences
    215 rdf:type schema:DefinedTerm
    216 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    217 schema:name Oncology and Carcinogenesis
    218 rdf:type schema:DefinedTerm
    219 sg:journal.1045337 schema:issn 2045-2322
    220 schema:name Scientific Reports
    221 schema:publisher Springer Nature
    222 rdf:type schema:Periodical
    223 sg:person.01030735253.10 schema:affiliation grid-institutes:grid.15444.30
    224 schema:familyName Lee
    225 schema:givenName Gunho
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030735253.10
    227 rdf:type schema:Person
    228 sg:person.01061166771.52 schema:affiliation grid-institutes:grid.15444.30
    229 schema:familyName Kim
    230 schema:givenName Hyunki
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061166771.52
    232 rdf:type schema:Person
    233 sg:person.01120377020.04 schema:affiliation grid-institutes:grid.15444.30
    234 schema:familyName Noh
    235 schema:givenName Sung Hoon
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120377020.04
    237 rdf:type schema:Person
    238 sg:person.01206477346.19 schema:affiliation grid-institutes:grid.15444.30
    239 schema:familyName Kim
    240 schema:givenName Hyoung-Il
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206477346.19
    242 rdf:type schema:Person
    243 sg:person.01232736736.20 schema:affiliation grid-institutes:grid.15444.30
    244 schema:familyName Choi
    245 schema:givenName Yoon Young
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232736736.20
    247 rdf:type schema:Person
    248 sg:person.01301476544.74 schema:affiliation grid-institutes:grid.15444.30
    249 schema:familyName Hyung
    250 schema:givenName Woo Jin
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301476544.74
    252 rdf:type schema:Person
    253 sg:person.014264770007.26 schema:affiliation grid-institutes:grid.15444.30
    254 schema:familyName Kim
    255 schema:givenName Sangwoo
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264770007.26
    257 rdf:type schema:Person
    258 sg:person.0576310512.26 schema:affiliation grid-institutes:grid.15444.30
    259 schema:familyName Cheong
    260 schema:givenName Jae-Ho
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576310512.26
    262 rdf:type schema:Person
    263 sg:person.0577625106.44 schema:affiliation grid-institutes:grid.15444.30
    264 schema:familyName Kim
    265 schema:givenName Choong-Bai
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577625106.44
    267 rdf:type schema:Person
    268 sg:person.0600260253.28 schema:affiliation grid-institutes:grid.15444.30
    269 schema:familyName Lee
    270 schema:givenName Jae Eun
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600260253.28
    272 rdf:type schema:Person
    273 sg:person.0621606620.30 schema:affiliation grid-institutes:grid.414964.a
    274 schema:familyName An
    275 schema:givenName Ji Yeong
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621606620.30
    277 rdf:type schema:Person
    278 sg:person.0762622053.46 schema:affiliation grid-institutes:grid.15444.30
    279 schema:familyName Kim
    280 schema:givenName Ka-Kyung
    281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762622053.46
    282 rdf:type schema:Person
    283 sg:pub.10.1007/978-3-642-82372-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038329908
    284 https://doi.org/10.1007/978-3-642-82372-5_8
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/labinvest.2013.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038322655
    287 https://doi.org/10.1038/labinvest.2013.8
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nbt.2514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000477771
    290 https://doi.org/10.1038/nbt.2514
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nm.2454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044243050
    293 https://doi.org/10.1038/nm.2454
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/nm.3850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002173905
    296 https://doi.org/10.1038/nm.3850
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/nrclinonc.2012.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013064241
    299 https://doi.org/10.1038/nrclinonc.2012.61
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/srep08542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012144080
    302 https://doi.org/10.1038/srep08542
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/srep09447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008272966
    305 https://doi.org/10.1038/srep09447
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1054/bjoc.2001.1796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026993418
    308 https://doi.org/10.1054/bjoc.2001.1796
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1186/1471-2164-15-1172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010519837
    311 https://doi.org/10.1186/1471-2164-15-1172
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1186/bcr3095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014060180
    314 https://doi.org/10.1186/bcr3095
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1186/gb-2013-14-8-r90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050944554
    317 https://doi.org/10.1186/gb-2013-14-8-r90
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1245/s10434-015-4425-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036044363
    320 https://doi.org/10.1245/s10434-015-4425-3
    321 rdf:type schema:CreativeWork
    322 grid-institutes:grid.15444.30 schema:alternateName Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
    323 Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.
    324 Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.
    325 Open NBI Convergence Technology Research Laboratory of Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.
    326 Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
    327 Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea.
    328 schema:name Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
    329 Department of Biochemistry &Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.
    330 Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.
    331 Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.
    332 Open NBI Convergence Technology Research Laboratory of Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.
    333 Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
    334 Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea.
    335 rdf:type schema:Organization
    336 grid-institutes:grid.414964.a schema:alternateName Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
    337 schema:name Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
    338 Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.
    339 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...