Chemical Vapor Deposition of Monolayer Mo1−xWxS2 Crystals with Tunable Band Gaps View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-22

AUTHORS

Ziqian Wang, Pan Liu, Yoshikazu Ito, Shoucong Ning, Yongwen Tan, Takeshi Fujita, Akihiko Hirata, Mingwei Chen

ABSTRACT

Band gap engineering of monolayer transition metal dichalcogenides, such as MoS2 and WS2, is essential for the applications of the two-dimensional (2D) crystals in electronic and optoelectronic devices. Although it is known that chemical mixture can evidently change the band gaps of alloyed Mo1−xWxS2 crystals, the successful growth of Mo1−xWxS2 monolayers with tunable Mo/W ratios has not been realized by conventional chemical vapor deposition. Herein, we developed a low-pressure chemical vapor deposition (LP-CVD) method to grow monolayer Mo1−xWxS2 (x = 0–1) 2D crystals with a wide range of Mo/W ratios. Raman spectroscopy and high-resolution transmission electron microscopy demonstrate the homogeneous mixture of Mo and W in the 2D alloys. Photoluminescence measurements show that the optical band gaps of the monolayer Mo1−xWxS2 crystals strongly depend on the Mo/W ratios and continuously tunable band gap can be achieved by controlling the W or Mo portion by the LP-CVD. More... »

PAGES

21536

References to SciGraph publications

  • 2015-08-29. Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2 in NANO RESEARCH
  • 2015-03-23. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials in NATURE NANOTECHNOLOGY
  • 2014-08-31. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors in NATURE MATERIALS
  • 2014-07-01. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers in NATURE COMMUNICATIONS
  • 2014-09-28. Vertical and in-plane heterostructures from WS2/MoS2 monolayers in NATURE MATERIALS
  • 2011-11-11. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 in NANO RESEARCH
  • 2014-04-20. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2 in NATURE NANOTECHNOLOGY
  • 2014-11-18. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition in NATURE COMMUNICATIONS
  • 2013-07-07. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution in NATURE MATERIALS
  • 2015-07-23. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer in NATURE COMMUNICATIONS
  • 2013-06-09. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers in NATURE MATERIALS
  • 2013-01-15. Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers in NATURE COMMUNICATIONS
  • 2013-05-21. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films in SCIENTIFIC REPORTS
  • 2013-05-05. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide in NATURE MATERIALS
  • 2014-02-27. New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep21536

    DOI

    http://dx.doi.org/10.1038/srep21536

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025333565

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26899364


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials Science, Graduate School of Engineering, Tohoku University, 980-8577, Sendai, Japan", 
              "id": "http://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Department of Materials Science, Graduate School of Engineering, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Ziqian", 
            "id": "sg:person.01056051043.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056051043.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
              "id": "http://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Pan", 
            "id": "sg:person.0700644400.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700644400.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
                "CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ito", 
            "givenName": "Yoshikazu", 
            "id": "sg:person.01134342214.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134342214.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical and Aerospace Engineering, School of Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Mechanical and Aerospace Engineering, School of Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ning", 
            "givenName": "Shoucong", 
            "id": "sg:person.07662375577.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662375577.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
              "id": "http://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Yongwen", 
            "id": "sg:person.01320223030.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320223030.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
                "CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fujita", 
            "givenName": "Takeshi", 
            "id": "sg:person.01260575477.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260575477.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
                "CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hirata", 
            "givenName": "Akihiko", 
            "id": "sg:person.01054462015.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054462015.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "Department of Materials Science, Graduate School of Engineering, Tohoku University, 980-8577, Sendai, Japan", 
                "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
                "CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Mingwei", 
            "id": "sg:person.01111213505.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/srep04215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009866802", 
              "https://doi.org/10.1038/srep04215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3633", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016046837", 
              "https://doi.org/10.1038/nmat3633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-011-0183-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013114614", 
              "https://doi.org/10.1007/s12274-011-0183-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034933436", 
              "https://doi.org/10.1038/nnano.2014.64"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029630399", 
              "https://doi.org/10.1038/ncomms5214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024194832", 
              "https://doi.org/10.1038/ncomms8817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep01866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012370270", 
              "https://doi.org/10.1038/srep01866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023849629", 
              "https://doi.org/10.1038/ncomms6246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040210542", 
              "https://doi.org/10.1038/nmat3673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044703873", 
              "https://doi.org/10.1038/nmat4091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007402816", 
              "https://doi.org/10.1038/nnano.2015.40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-015-0762-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034289548", 
              "https://doi.org/10.1007/s12274-015-0762-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048205566", 
              "https://doi.org/10.1038/nmat3700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019985867", 
              "https://doi.org/10.1038/ncomms2351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038763950", 
              "https://doi.org/10.1038/nmat4080"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-02-22", 
        "datePublishedReg": "2016-02-22", 
        "description": "Band gap engineering of monolayer transition metal dichalcogenides, such as MoS2 and WS2, is essential for the applications of the two-dimensional (2D) crystals in electronic and optoelectronic devices. Although it is known that chemical mixture can evidently change the band gaps of alloyed Mo1\u2212xWxS2 crystals, the successful growth of Mo1\u2212xWxS2 monolayers with tunable Mo/W ratios has not been realized by conventional chemical vapor deposition. Herein, we developed a low-pressure chemical vapor deposition (LP-CVD) method to grow monolayer Mo1\u2212xWxS2 (x\u2009=\u20090\u20131) 2D crystals with a wide range of Mo/W ratios. Raman spectroscopy and high-resolution transmission electron microscopy demonstrate the homogeneous mixture of Mo and W in the 2D alloys. Photoluminescence measurements show that the optical band gaps of the monolayer Mo1\u2212xWxS2 crystals strongly depend on the Mo/W ratios and continuously tunable band gap can be achieved by controlling the W or Mo portion by the LP-CVD.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/srep21536", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7435582", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6132890", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "tunable band gap", 
          "band gap", 
          "chemical vapor deposition", 
          "monolayer transition metal dichalcogenides", 
          "optical band gap", 
          "vapor deposition", 
          "low-pressure chemical vapor deposition method", 
          "transition metal dichalcogenides", 
          "band gap engineering", 
          "high-resolution transmission electron microscopy", 
          "chemical vapor deposition method", 
          "vapor deposition method", 
          "conventional chemical vapor deposition", 
          "two-dimensional crystals", 
          "optoelectronic devices", 
          "gap engineering", 
          "photoluminescence measurements", 
          "metal dichalcogenides", 
          "transmission electron microscopy", 
          "Mo/W ratio", 
          "deposition method", 
          "Raman spectroscopy", 
          "successful growth", 
          "crystals", 
          "LP-CVD", 
          "monolayers", 
          "electron microscopy", 
          "W ratio", 
          "gap", 
          "dichalcogenides", 
          "deposition", 
          "WS2", 
          "MoS2", 
          "spectroscopy", 
          "microscopy", 
          "measurements", 
          "devices", 
          "homogeneous mixture", 
          "Herein", 
          "wide range", 
          "engineering", 
          "Alloyed", 
          "applications", 
          "chemical mixtures", 
          "ratio", 
          "range", 
          "alloy", 
          "Mo", 
          "mixture", 
          "method", 
          "growth", 
          "portion"
        ], 
        "name": "Chemical Vapor Deposition of Monolayer Mo1\u2212xWxS2 Crystals with Tunable Band Gaps", 
        "pagination": "21536", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025333565"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep21536"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26899364"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep21536", 
          "https://app.dimensions.ai/details/publication/pub.1025333565"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_700.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/srep21536"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep21536'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep21536'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep21536'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep21536'


     

    This table displays all metadata directly associated to this object as RDF triples.

    243 TRIPLES      21 PREDICATES      94 URIs      69 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep21536 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 schema:author N22a8b51fc9784081accd0f927b62b36c
    6 schema:citation sg:pub.10.1007/s12274-011-0183-0
    7 sg:pub.10.1007/s12274-015-0762-6
    8 sg:pub.10.1038/ncomms2351
    9 sg:pub.10.1038/ncomms5214
    10 sg:pub.10.1038/ncomms6246
    11 sg:pub.10.1038/ncomms8817
    12 sg:pub.10.1038/nmat3633
    13 sg:pub.10.1038/nmat3673
    14 sg:pub.10.1038/nmat3700
    15 sg:pub.10.1038/nmat4080
    16 sg:pub.10.1038/nmat4091
    17 sg:pub.10.1038/nnano.2014.64
    18 sg:pub.10.1038/nnano.2015.40
    19 sg:pub.10.1038/srep01866
    20 sg:pub.10.1038/srep04215
    21 schema:datePublished 2016-02-22
    22 schema:datePublishedReg 2016-02-22
    23 schema:description Band gap engineering of monolayer transition metal dichalcogenides, such as MoS2 and WS2, is essential for the applications of the two-dimensional (2D) crystals in electronic and optoelectronic devices. Although it is known that chemical mixture can evidently change the band gaps of alloyed Mo1−xWxS2 crystals, the successful growth of Mo1−xWxS2 monolayers with tunable Mo/W ratios has not been realized by conventional chemical vapor deposition. Herein, we developed a low-pressure chemical vapor deposition (LP-CVD) method to grow monolayer Mo1−xWxS2 (x = 0–1) 2D crystals with a wide range of Mo/W ratios. Raman spectroscopy and high-resolution transmission electron microscopy demonstrate the homogeneous mixture of Mo and W in the 2D alloys. Photoluminescence measurements show that the optical band gaps of the monolayer Mo1−xWxS2 crystals strongly depend on the Mo/W ratios and continuously tunable band gap can be achieved by controlling the W or Mo portion by the LP-CVD.
    24 schema:genre article
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N031723b5d30a40b78190b8f1fe21cae6
    27 N64bcfd30666243068c0bc680af44f86c
    28 sg:journal.1045337
    29 schema:keywords Alloyed
    30 Herein
    31 LP-CVD
    32 Mo
    33 Mo/W ratio
    34 MoS2
    35 Raman spectroscopy
    36 W ratio
    37 WS2
    38 alloy
    39 applications
    40 band gap
    41 band gap engineering
    42 chemical mixtures
    43 chemical vapor deposition
    44 chemical vapor deposition method
    45 conventional chemical vapor deposition
    46 crystals
    47 deposition
    48 deposition method
    49 devices
    50 dichalcogenides
    51 electron microscopy
    52 engineering
    53 gap
    54 gap engineering
    55 growth
    56 high-resolution transmission electron microscopy
    57 homogeneous mixture
    58 low-pressure chemical vapor deposition method
    59 measurements
    60 metal dichalcogenides
    61 method
    62 microscopy
    63 mixture
    64 monolayer transition metal dichalcogenides
    65 monolayers
    66 optical band gap
    67 optoelectronic devices
    68 photoluminescence measurements
    69 portion
    70 range
    71 ratio
    72 spectroscopy
    73 successful growth
    74 transition metal dichalcogenides
    75 transmission electron microscopy
    76 tunable band gap
    77 two-dimensional crystals
    78 vapor deposition
    79 vapor deposition method
    80 wide range
    81 schema:name Chemical Vapor Deposition of Monolayer Mo1−xWxS2 Crystals with Tunable Band Gaps
    82 schema:pagination 21536
    83 schema:productId N710db35759e64b728ae19ba32ab3ad21
    84 N9ac600c31668455f9bdebb2018c852d0
    85 Ncd9a3a84ee2f4e749a5e2a4a4bd50ba8
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025333565
    87 https://doi.org/10.1038/srep21536
    88 schema:sdDatePublished 2022-09-02T15:59
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher Nc7259b2cc28b4f1690ddd35ae8f4515c
    91 schema:url https://doi.org/10.1038/srep21536
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N031723b5d30a40b78190b8f1fe21cae6 schema:volumeNumber 6
    96 rdf:type schema:PublicationVolume
    97 N22a8b51fc9784081accd0f927b62b36c rdf:first sg:person.01056051043.81
    98 rdf:rest N49f1de4455c648a280292278e1f9db33
    99 N44468444ac7b4f8eb5a49d0dd5a83da0 rdf:first sg:person.01320223030.21
    100 rdf:rest N4e5de24d64c04ca0bb0c889fd2219287
    101 N49f1de4455c648a280292278e1f9db33 rdf:first sg:person.0700644400.67
    102 rdf:rest N5e5d7c9e0dac4d329b047a97c7f741c7
    103 N4e5de24d64c04ca0bb0c889fd2219287 rdf:first sg:person.01260575477.34
    104 rdf:rest N5d2f42b7d1534557be84b83a08e6a329
    105 N5d2f42b7d1534557be84b83a08e6a329 rdf:first sg:person.01054462015.95
    106 rdf:rest Neb4a8cf2917f4acdbb9c604f1e864294
    107 N5e5d7c9e0dac4d329b047a97c7f741c7 rdf:first sg:person.01134342214.22
    108 rdf:rest Nb54bd2f081f6417f94c9dd0374f3ddea
    109 N64bcfd30666243068c0bc680af44f86c schema:issueNumber 1
    110 rdf:type schema:PublicationIssue
    111 N710db35759e64b728ae19ba32ab3ad21 schema:name pubmed_id
    112 schema:value 26899364
    113 rdf:type schema:PropertyValue
    114 N9ac600c31668455f9bdebb2018c852d0 schema:name dimensions_id
    115 schema:value pub.1025333565
    116 rdf:type schema:PropertyValue
    117 Nb54bd2f081f6417f94c9dd0374f3ddea rdf:first sg:person.07662375577.23
    118 rdf:rest N44468444ac7b4f8eb5a49d0dd5a83da0
    119 Nc7259b2cc28b4f1690ddd35ae8f4515c schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 Ncd9a3a84ee2f4e749a5e2a4a4bd50ba8 schema:name doi
    122 schema:value 10.1038/srep21536
    123 rdf:type schema:PropertyValue
    124 Neb4a8cf2917f4acdbb9c604f1e864294 rdf:first sg:person.01111213505.34
    125 rdf:rest rdf:nil
    126 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Physical Sciences
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Other Physical Sciences
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Engineering
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Materials Engineering
    137 rdf:type schema:DefinedTerm
    138 sg:grant.6132890 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21536
    139 rdf:type schema:MonetaryGrant
    140 sg:grant.7435582 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21536
    141 rdf:type schema:MonetaryGrant
    142 sg:journal.1045337 schema:issn 2045-2322
    143 schema:name Scientific Reports
    144 schema:publisher Springer Nature
    145 rdf:type schema:Periodical
    146 sg:person.01054462015.95 schema:affiliation grid-institutes:grid.419082.6
    147 schema:familyName Hirata
    148 schema:givenName Akihiko
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054462015.95
    150 rdf:type schema:Person
    151 sg:person.01056051043.81 schema:affiliation grid-institutes:grid.69566.3a
    152 schema:familyName Wang
    153 schema:givenName Ziqian
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056051043.81
    155 rdf:type schema:Person
    156 sg:person.01111213505.34 schema:affiliation grid-institutes:grid.419082.6
    157 schema:familyName Chen
    158 schema:givenName Mingwei
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34
    160 rdf:type schema:Person
    161 sg:person.01134342214.22 schema:affiliation grid-institutes:grid.419082.6
    162 schema:familyName Ito
    163 schema:givenName Yoshikazu
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134342214.22
    165 rdf:type schema:Person
    166 sg:person.01260575477.34 schema:affiliation grid-institutes:grid.419082.6
    167 schema:familyName Fujita
    168 schema:givenName Takeshi
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260575477.34
    170 rdf:type schema:Person
    171 sg:person.01320223030.21 schema:affiliation grid-institutes:grid.69566.3a
    172 schema:familyName Tan
    173 schema:givenName Yongwen
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320223030.21
    175 rdf:type schema:Person
    176 sg:person.0700644400.67 schema:affiliation grid-institutes:grid.69566.3a
    177 schema:familyName Liu
    178 schema:givenName Pan
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700644400.67
    180 rdf:type schema:Person
    181 sg:person.07662375577.23 schema:affiliation grid-institutes:None
    182 schema:familyName Ning
    183 schema:givenName Shoucong
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662375577.23
    185 rdf:type schema:Person
    186 sg:pub.10.1007/s12274-011-0183-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013114614
    187 https://doi.org/10.1007/s12274-011-0183-0
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s12274-015-0762-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034289548
    190 https://doi.org/10.1007/s12274-015-0762-6
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/ncomms2351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019985867
    193 https://doi.org/10.1038/ncomms2351
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ncomms5214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029630399
    196 https://doi.org/10.1038/ncomms5214
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/ncomms6246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023849629
    199 https://doi.org/10.1038/ncomms6246
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/ncomms8817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024194832
    202 https://doi.org/10.1038/ncomms8817
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nmat3633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016046837
    205 https://doi.org/10.1038/nmat3633
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nmat3673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040210542
    208 https://doi.org/10.1038/nmat3673
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nmat3700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048205566
    211 https://doi.org/10.1038/nmat3700
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nmat4080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038763950
    214 https://doi.org/10.1038/nmat4080
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nmat4091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044703873
    217 https://doi.org/10.1038/nmat4091
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nnano.2014.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034933436
    220 https://doi.org/10.1038/nnano.2014.64
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nnano.2015.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007402816
    223 https://doi.org/10.1038/nnano.2015.40
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/srep01866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012370270
    226 https://doi.org/10.1038/srep01866
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/srep04215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009866802
    229 https://doi.org/10.1038/srep04215
    230 rdf:type schema:CreativeWork
    231 grid-institutes:None schema:alternateName Department of Mechanical and Aerospace Engineering, School of Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
    232 schema:name Department of Mechanical and Aerospace Engineering, School of Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
    233 rdf:type schema:Organization
    234 grid-institutes:grid.419082.6 schema:alternateName CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan
    235 schema:name CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan
    236 Department of Materials Science, Graduate School of Engineering, Tohoku University, 980-8577, Sendai, Japan
    237 WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
    238 rdf:type schema:Organization
    239 grid-institutes:grid.69566.3a schema:alternateName Department of Materials Science, Graduate School of Engineering, Tohoku University, 980-8577, Sendai, Japan
    240 WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
    241 schema:name Department of Materials Science, Graduate School of Engineering, Tohoku University, 980-8577, Sendai, Japan
    242 WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
    243 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...