The Critical Criterion on Runaway Shear Banding in Metallic Glasses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-19

AUTHORS

B. A. Sun, Y. Yang, W. H. Wang, C. T. Liu

ABSTRACT

The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures. More... »

PAGES

21388

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep21388

DOI

http://dx.doi.org/10.1038/srep21388

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020842857

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26893196


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong", 
          "id": "http://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "B. A.", 
        "id": "sg:person.016250700645.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250700645.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong", 
          "id": "http://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Y.", 
        "id": "sg:person.011030777611.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030777611.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "W. H.", 
        "id": "sg:person.01363714371.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong", 
          "id": "http://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "C. T.", 
        "id": "sg:person.011275665477.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275665477.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature05119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003836216", 
          "https://doi.org/10.1038/nature05119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/374607a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014440628", 
          "https://doi.org/10.1038/374607a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006395896", 
          "https://doi.org/10.1038/nmat1552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034149236", 
          "https://doi.org/10.1038/nmat2802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037157089", 
          "https://doi.org/10.1038/nature06598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035691384", 
          "https://doi.org/10.1038/nmat1536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020869531", 
          "https://doi.org/10.1038/nmat2468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/s0883769400053252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067964161", 
          "https://doi.org/10.1557/s0883769400053252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042156004", 
          "https://doi.org/10.1038/nmat2930"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-19", 
    "datePublishedReg": "2016-02-19", 
    "description": "The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures. ", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep21388", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7426867", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7194205", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7427489", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "shear bands", 
      "metallic glasses", 
      "dominant shear band", 
      "plasticity of MGs", 
      "shear band velocity", 
      "failure transition", 
      "single shear band", 
      "tough metallic glasses", 
      "stick-slip manner", 
      "nanoscale shear bands", 
      "final fracture", 
      "tremendous research interest", 
      "frame stiffness", 
      "plastic flow", 
      "shear banding", 
      "catastrophic failure", 
      "alloy composition", 
      "cavitation process", 
      "liquid instabilities", 
      "continuum theory", 
      "band velocity", 
      "slip", 
      "critical value", 
      "glass", 
      "velocity", 
      "important phenomenon", 
      "physical origin", 
      "lubrication", 
      "friction", 
      "critical criteria", 
      "deformation", 
      "stiffness", 
      "research interest", 
      "practical importance", 
      "fractures", 
      "engineering", 
      "solids", 
      "flow", 
      "band", 
      "quantitative insights", 
      "materials", 
      "design", 
      "compression", 
      "bulk", 
      "earthquakes", 
      "instability", 
      "behavior", 
      "structure", 
      "process", 
      "transition", 
      "magnitude", 
      "phenomenon", 
      "size", 
      "composition", 
      "failure", 
      "values", 
      "rate", 
      "past decade", 
      "plasticity", 
      "theory", 
      "interest", 
      "state", 
      "criteria", 
      "banding", 
      "manner", 
      "decades", 
      "insights", 
      "importance", 
      "science", 
      "origin", 
      "natural sciences", 
      "sample size", 
      "current findings", 
      "findings", 
      "transition state", 
      "testing frame stiffness", 
      "critical shear band velocity", 
      "plastic/tough MG", 
      "Runaway Shear Banding"
    ], 
    "name": "The Critical Criterion on Runaway Shear Banding in Metallic Glasses", 
    "pagination": "21388", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020842857"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep21388"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26893196"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep21388", 
      "https://app.dimensions.ai/details/publication/pub.1020842857"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_693.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep21388"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep21388'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep21388'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep21388'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep21388'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      22 PREDICATES      114 URIs      97 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep21388 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf4c26ee6533c4fabb0ac500f8629b2c7
4 schema:citation sg:pub.10.1038/374607a0
5 sg:pub.10.1038/nature05119
6 sg:pub.10.1038/nature06598
7 sg:pub.10.1038/nmat1536
8 sg:pub.10.1038/nmat1552
9 sg:pub.10.1038/nmat2468
10 sg:pub.10.1038/nmat2802
11 sg:pub.10.1038/nmat2930
12 sg:pub.10.1557/s0883769400053252
13 schema:datePublished 2016-02-19
14 schema:datePublishedReg 2016-02-19
15 schema:description The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N0c6e226bfc884f46a6cb02c3d67eef54
20 Ne4eb0eaab8984752b4b6a01ee591ba65
21 sg:journal.1045337
22 schema:keywords Runaway Shear Banding
23 alloy composition
24 band
25 band velocity
26 banding
27 behavior
28 bulk
29 catastrophic failure
30 cavitation process
31 composition
32 compression
33 continuum theory
34 criteria
35 critical criteria
36 critical shear band velocity
37 critical value
38 current findings
39 decades
40 deformation
41 design
42 dominant shear band
43 earthquakes
44 engineering
45 failure
46 failure transition
47 final fracture
48 findings
49 flow
50 fractures
51 frame stiffness
52 friction
53 glass
54 importance
55 important phenomenon
56 insights
57 instability
58 interest
59 liquid instabilities
60 lubrication
61 magnitude
62 manner
63 materials
64 metallic glasses
65 nanoscale shear bands
66 natural sciences
67 origin
68 past decade
69 phenomenon
70 physical origin
71 plastic flow
72 plastic/tough MG
73 plasticity
74 plasticity of MGs
75 practical importance
76 process
77 quantitative insights
78 rate
79 research interest
80 sample size
81 science
82 shear band velocity
83 shear banding
84 shear bands
85 single shear band
86 size
87 slip
88 solids
89 state
90 stick-slip manner
91 stiffness
92 structure
93 testing frame stiffness
94 theory
95 tough metallic glasses
96 transition
97 transition state
98 tremendous research interest
99 values
100 velocity
101 schema:name The Critical Criterion on Runaway Shear Banding in Metallic Glasses
102 schema:pagination 21388
103 schema:productId N1dcef050c3a449c089b0b36089eb8e90
104 N5d5b3bfac84e4661941d12000cfe17d0
105 Nf928b981e11f4bf8b1f10f1179271825
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020842857
107 https://doi.org/10.1038/srep21388
108 schema:sdDatePublished 2021-12-01T19:36
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher N9e1af61d546f4d82bdbd447b97de8129
111 schema:url https://doi.org/10.1038/srep21388
112 sgo:license sg:explorer/license/
113 sgo:sdDataset articles
114 rdf:type schema:ScholarlyArticle
115 N0c6e226bfc884f46a6cb02c3d67eef54 schema:issueNumber 1
116 rdf:type schema:PublicationIssue
117 N1dcef050c3a449c089b0b36089eb8e90 schema:name pubmed_id
118 schema:value 26893196
119 rdf:type schema:PropertyValue
120 N4f73768ed6e34d1d987f730a6221f454 rdf:first sg:person.011275665477.02
121 rdf:rest rdf:nil
122 N5d5b3bfac84e4661941d12000cfe17d0 schema:name doi
123 schema:value 10.1038/srep21388
124 rdf:type schema:PropertyValue
125 N7922b14cc3ec4c9a87413c1970e4cb89 rdf:first sg:person.011030777611.68
126 rdf:rest Nd23e8859edd94f5c95b67ceb81e25d41
127 N9e1af61d546f4d82bdbd447b97de8129 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Nd23e8859edd94f5c95b67ceb81e25d41 rdf:first sg:person.01363714371.28
130 rdf:rest N4f73768ed6e34d1d987f730a6221f454
131 Ne4eb0eaab8984752b4b6a01ee591ba65 schema:volumeNumber 6
132 rdf:type schema:PublicationVolume
133 Nf4c26ee6533c4fabb0ac500f8629b2c7 rdf:first sg:person.016250700645.65
134 rdf:rest N7922b14cc3ec4c9a87413c1970e4cb89
135 Nf928b981e11f4bf8b1f10f1179271825 schema:name dimensions_id
136 schema:value pub.1020842857
137 rdf:type schema:PropertyValue
138 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
139 schema:name Engineering
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
142 schema:name Materials Engineering
143 rdf:type schema:DefinedTerm
144 sg:grant.7194205 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21388
145 rdf:type schema:MonetaryGrant
146 sg:grant.7426867 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21388
147 rdf:type schema:MonetaryGrant
148 sg:grant.7427489 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21388
149 rdf:type schema:MonetaryGrant
150 sg:journal.1045337 schema:issn 2045-2322
151 schema:name Scientific Reports
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.011030777611.68 schema:affiliation grid-institutes:grid.35030.35
155 schema:familyName Yang
156 schema:givenName Y.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030777611.68
158 rdf:type schema:Person
159 sg:person.011275665477.02 schema:affiliation grid-institutes:grid.35030.35
160 schema:familyName Liu
161 schema:givenName C. T.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275665477.02
163 rdf:type schema:Person
164 sg:person.01363714371.28 schema:affiliation grid-institutes:grid.458438.6
165 schema:familyName Wang
166 schema:givenName W. H.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28
168 rdf:type schema:Person
169 sg:person.016250700645.65 schema:affiliation grid-institutes:grid.35030.35
170 schema:familyName Sun
171 schema:givenName B. A.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250700645.65
173 rdf:type schema:Person
174 sg:pub.10.1038/374607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014440628
175 https://doi.org/10.1038/374607a0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nature05119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003836216
178 https://doi.org/10.1038/nature05119
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nature06598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037157089
181 https://doi.org/10.1038/nature06598
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nmat1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035691384
184 https://doi.org/10.1038/nmat1536
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nmat1552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006395896
187 https://doi.org/10.1038/nmat1552
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nmat2468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020869531
190 https://doi.org/10.1038/nmat2468
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nmat2802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034149236
193 https://doi.org/10.1038/nmat2802
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nmat2930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042156004
196 https://doi.org/10.1038/nmat2930
197 rdf:type schema:CreativeWork
198 sg:pub.10.1557/s0883769400053252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067964161
199 https://doi.org/10.1557/s0883769400053252
200 rdf:type schema:CreativeWork
201 grid-institutes:grid.35030.35 schema:alternateName Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
202 schema:name Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
203 rdf:type schema:Organization
204 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
205 schema:name Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...