RETRACTED ARTICLE: Increased biomass productivity in green algae by tuning non-photochemical quenching View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-18

AUTHORS

Silvia Berteotti, Matteo Ballottari, Roberto Bassi

ABSTRACT

Photosynthetic microalgae have a high potential for the production of biofuels and highly valued metabolites. However, their current industrial exploitation is limited by a productivity in photobioreactors that is low compared to potential productivity. The high cell density and pigment content of the surface layers of photosynthetic microalgae result in absorption of excess photons and energy dissipation through non-photochemical quenching (NPQ). NPQ prevents photoinhibition, but its activation reduces the efficiency of photosynthetic energy conversion. In Chlamydomonas reinhardtii, NPQ is catalyzed by protein subunits encoded by three lhcsr (light harvesting complex stress related) genes. Here, we show that heat dissipation and biomass productivity depends on LHCSR protein accumulation. Indeed, algal strains lacking two lhcsr genes can grow in a wide range of light growth conditions without suffering from photoinhibition and are more productive than wild-type. Thus, the down-regulation of NPQ appears to be a suitable strategy for improving light use efficiency for biomass and biofuel production in microalgae. More... »

PAGES

21339

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep21339

DOI

http://dx.doi.org/10.1038/srep21339

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001869484

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26888481


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlamydomonas reinhardtii", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quorum Sensing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berteotti", 
        "givenName": "Silvia", 
        "id": "sg:person.01253475336.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253475336.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ballottari", 
        "givenName": "Matteo", 
        "id": "sg:person.01260322000.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260322000.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bassi", 
        "givenName": "Roberto", 
        "id": "sg:person.0605371157.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00253-010-2697-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010467548", 
          "https://doi.org/10.1007/s00253-010-2697-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-010-9579-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007710659", 
          "https://doi.org/10.1007/s11120-010-9579-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004250050191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007398460", 
          "https://doi.org/10.1007/s004250050191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036072520", 
          "https://doi.org/10.1038/nature08587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2049-1891-4-53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031411186", 
          "https://doi.org/10.1186/2049-1891-4-53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00386231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032536189", 
          "https://doi.org/10.1007/bf00386231"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-18", 
    "datePublishedReg": "2016-02-18", 
    "description": "Photosynthetic microalgae have a high potential for the production of biofuels and highly valued metabolites. However, their current industrial exploitation is limited by a productivity in photobioreactors that is low compared to potential productivity. The high cell density and pigment content of the surface layers of photosynthetic microalgae result in absorption of excess photons and energy dissipation through non-photochemical quenching (NPQ). NPQ prevents photoinhibition, but its activation reduces the efficiency of photosynthetic energy conversion. In Chlamydomonas reinhardtii, NPQ is catalyzed by protein subunits encoded by three lhcsr (light harvesting complex stress related) genes. Here, we show that heat dissipation and biomass productivity depends on LHCSR protein accumulation. Indeed, algal strains lacking two lhcsr genes can grow in a wide range of light growth conditions without suffering from photoinhibition and are more productive than wild-type. Thus, the down-regulation of NPQ appears to be a suitable strategy for improving light use efficiency for biomass and biofuel production in microalgae.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep21339", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6856296", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "non-photochemical quenching", 
      "photosynthetic microalgae", 
      "light growth conditions", 
      "photosynthetic energy conversion", 
      "green algae", 
      "Chlamydomonas reinhardtii", 
      "protein subunits", 
      "biomass productivity", 
      "light use efficiency", 
      "high cell density", 
      "protein accumulation", 
      "pigment content", 
      "production of biofuels", 
      "use efficiency", 
      "microalgae", 
      "growth conditions", 
      "biofuel production", 
      "photoinhibition", 
      "genes", 
      "excess photons", 
      "cell density", 
      "potential productivity", 
      "reinhardtii", 
      "algae", 
      "productivity", 
      "algal", 
      "subunits", 
      "industrial exploitation", 
      "biomass", 
      "production", 
      "activation", 
      "accumulation", 
      "metabolites", 
      "wide range", 
      "suitable strategy", 
      "high potential", 
      "biofuels", 
      "photobioreactor", 
      "exploitation", 
      "quenching", 
      "potential", 
      "content", 
      "conversion", 
      "strategies", 
      "conditions", 
      "range", 
      "density", 
      "efficiency", 
      "energy conversion", 
      "energy dissipation", 
      "absorption", 
      "surface layer", 
      "dissipation", 
      "heat dissipation", 
      "layer", 
      "photons"
    ], 
    "name": "RETRACTED ARTICLE: Increased biomass productivity in green algae by tuning non-photochemical quenching", 
    "pagination": "21339", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001869484"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep21339"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26888481"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep21339", 
      "https://app.dimensions.ai/details/publication/pub.1001869484"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_699.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep21339"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep21339'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep21339'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep21339'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep21339'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      92 URIs      77 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep21339 schema:about N578789981c514d1bbd0e523001434de7
2 N5cbfdb48171b45c4ab7162ab7fe27cf7
3 N8d2027e410b242bca0dc5acb6f532ac9
4 Nc8080b27e9c64ab6a3c5761832108bb4
5 anzsrc-for:06
6 anzsrc-for:0601
7 anzsrc-for:0607
8 schema:author Nec38180af0644dc2bbc6578b224641d0
9 schema:citation sg:pub.10.1007/bf00386231
10 sg:pub.10.1007/s00253-010-2697-x
11 sg:pub.10.1007/s004250050191
12 sg:pub.10.1007/s11120-010-9579-z
13 sg:pub.10.1038/nature08587
14 sg:pub.10.1186/2049-1891-4-53
15 schema:datePublished 2016-02-18
16 schema:datePublishedReg 2016-02-18
17 schema:description Photosynthetic microalgae have a high potential for the production of biofuels and highly valued metabolites. However, their current industrial exploitation is limited by a productivity in photobioreactors that is low compared to potential productivity. The high cell density and pigment content of the surface layers of photosynthetic microalgae result in absorption of excess photons and energy dissipation through non-photochemical quenching (NPQ). NPQ prevents photoinhibition, but its activation reduces the efficiency of photosynthetic energy conversion. In Chlamydomonas reinhardtii, NPQ is catalyzed by protein subunits encoded by three lhcsr (light harvesting complex stress related) genes. Here, we show that heat dissipation and biomass productivity depends on LHCSR protein accumulation. Indeed, algal strains lacking two lhcsr genes can grow in a wide range of light growth conditions without suffering from photoinhibition and are more productive than wild-type. Thus, the down-regulation of NPQ appears to be a suitable strategy for improving light use efficiency for biomass and biofuel production in microalgae.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N3071fe96916641e28445992a036153d3
21 N7e378759e7984d92b3fb49dd9a8c1eb1
22 sg:journal.1045337
23 schema:keywords Chlamydomonas reinhardtii
24 absorption
25 accumulation
26 activation
27 algae
28 algal
29 biofuel production
30 biofuels
31 biomass
32 biomass productivity
33 cell density
34 conditions
35 content
36 conversion
37 density
38 dissipation
39 efficiency
40 energy conversion
41 energy dissipation
42 excess photons
43 exploitation
44 genes
45 green algae
46 growth conditions
47 heat dissipation
48 high cell density
49 high potential
50 industrial exploitation
51 layer
52 light growth conditions
53 light use efficiency
54 metabolites
55 microalgae
56 non-photochemical quenching
57 photobioreactor
58 photoinhibition
59 photons
60 photosynthetic energy conversion
61 photosynthetic microalgae
62 pigment content
63 potential
64 potential productivity
65 production
66 production of biofuels
67 productivity
68 protein accumulation
69 protein subunits
70 quenching
71 range
72 reinhardtii
73 strategies
74 subunits
75 suitable strategy
76 surface layer
77 use efficiency
78 wide range
79 schema:name RETRACTED ARTICLE: Increased biomass productivity in green algae by tuning non-photochemical quenching
80 schema:pagination 21339
81 schema:productId N2c7a9e7fe56240c5bc5148459d202cff
82 N4e13eba969aa4ac4931e18921c55aa8e
83 Nce9d7165bce54c91b9e11fad57888fd3
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869484
85 https://doi.org/10.1038/srep21339
86 schema:sdDatePublished 2022-10-01T06:42
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Ndd9fe0477d4941b79798c9db63527f62
89 schema:url https://doi.org/10.1038/srep21339
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N2c7a9e7fe56240c5bc5148459d202cff schema:name dimensions_id
94 schema:value pub.1001869484
95 rdf:type schema:PropertyValue
96 N3071fe96916641e28445992a036153d3 schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 N40f243317cc147b2aac449a9deb1b56e rdf:first sg:person.01260322000.32
99 rdf:rest Nee455621da66481fae71fc6bf7ed445b
100 N4e13eba969aa4ac4931e18921c55aa8e schema:name pubmed_id
101 schema:value 26888481
102 rdf:type schema:PropertyValue
103 N578789981c514d1bbd0e523001434de7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Quorum Sensing
105 rdf:type schema:DefinedTerm
106 N5cbfdb48171b45c4ab7162ab7fe27cf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Chlamydomonas reinhardtii
108 rdf:type schema:DefinedTerm
109 N7e378759e7984d92b3fb49dd9a8c1eb1 schema:volumeNumber 6
110 rdf:type schema:PublicationVolume
111 N8d2027e410b242bca0dc5acb6f532ac9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Biomass
113 rdf:type schema:DefinedTerm
114 Nc8080b27e9c64ab6a3c5761832108bb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Photosynthesis
116 rdf:type schema:DefinedTerm
117 Nce9d7165bce54c91b9e11fad57888fd3 schema:name doi
118 schema:value 10.1038/srep21339
119 rdf:type schema:PropertyValue
120 Ndd9fe0477d4941b79798c9db63527f62 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 Nec38180af0644dc2bbc6578b224641d0 rdf:first sg:person.01253475336.27
123 rdf:rest N40f243317cc147b2aac449a9deb1b56e
124 Nee455621da66481fae71fc6bf7ed445b rdf:first sg:person.0605371157.35
125 rdf:rest rdf:nil
126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biological Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biochemistry and Cell Biology
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
133 schema:name Plant Biology
134 rdf:type schema:DefinedTerm
135 sg:grant.6856296 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21339
136 rdf:type schema:MonetaryGrant
137 sg:journal.1045337 schema:issn 2045-2322
138 schema:name Scientific Reports
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.01253475336.27 schema:affiliation grid-institutes:grid.5611.3
142 schema:familyName Berteotti
143 schema:givenName Silvia
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253475336.27
145 rdf:type schema:Person
146 sg:person.01260322000.32 schema:affiliation grid-institutes:grid.5611.3
147 schema:familyName Ballottari
148 schema:givenName Matteo
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260322000.32
150 rdf:type schema:Person
151 sg:person.0605371157.35 schema:affiliation grid-institutes:grid.5611.3
152 schema:familyName Bassi
153 schema:givenName Roberto
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
155 rdf:type schema:Person
156 sg:pub.10.1007/bf00386231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032536189
157 https://doi.org/10.1007/bf00386231
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00253-010-2697-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010467548
160 https://doi.org/10.1007/s00253-010-2697-x
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s004250050191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007398460
163 https://doi.org/10.1007/s004250050191
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s11120-010-9579-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007710659
166 https://doi.org/10.1007/s11120-010-9579-z
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nature08587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036072520
169 https://doi.org/10.1038/nature08587
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/2049-1891-4-53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031411186
172 https://doi.org/10.1186/2049-1891-4-53
173 rdf:type schema:CreativeWork
174 grid-institutes:grid.5611.3 schema:alternateName Dipartimento di Biotecnologie, Università di Verona, Strada le Grazie 15, 37134, Verona, Italy
175 schema:name Dipartimento di Biotecnologie, Università di Verona, Strada le Grazie 15, 37134, Verona, Italy
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...