Weak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-19

AUTHORS

Guolin Zheng, Ning Wang, Jiyong Yang, Weike Wang, Haifeng Du, Wei Ning, Zhaorong Yang, Hai-Zhou Lu, Yuheng Zhang, Mingliang Tian

ABSTRACT

Many exotic physics anticipated in topological insulators require a gap to be opened for their topological surface states by breaking time reversal symmetry. The gap opening has been achieved by doping magnetic impurities, which however inevitably create extra carriers and disorder that undermine the electronic transport. In contrast, the proximity to a ferromagnetic/ferrimagnetic insulator may improve the device quality, thus promises a better way to open the gap while minimizing the side-effects. Here, we grow thin single-crystal Sb1.9Bi0.1Te3 micro flakes on insulating ferrimagnet BaFe12O19 by using the van der Waals epitaxy technique. The micro flakes show a negative magnetoresistance in weak perpendicular fields below 50 K, which can be quenched by increasing temperature. The signature implies the weak localization effect as its origin, which is absent in intrinsic topological insulators, unless a surface state gap is opened. The surface state gap is estimated to be 10 meV by using the theory of the gap-induced weak localization effect. These results indicate that the magnetic proximity effect may open the gap for the topological surface attached to BaM insulating ferrimagnet. This heterostructure may pave the way for the realization of new physical effects as well as the potential applications of spintronics devices. More... »

PAGES

21334

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep21334

DOI

http://dx.doi.org/10.1038/srep21334

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032032791

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26891682


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "High Magnetic Field Laboratory, the Chinese Academy of Sciences, Hefei 230031, the People\u2019s Republic of China", 
            "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Guolin", 
        "id": "sg:person.07505360532.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07505360532.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "High Magnetic Field Laboratory, the Chinese Academy of Sciences, Hefei 230031, the People\u2019s Republic of China", 
            "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ning", 
        "id": "sg:person.010434050445.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434050445.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "High Magnetic Field Laboratory, the Chinese Academy of Sciences, Hefei 230031, the People\u2019s Republic of China", 
            "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jiyong", 
        "id": "sg:person.01002743020.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002743020.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "High Magnetic Field Laboratory, the Chinese Academy of Sciences, Hefei 230031, the People\u2019s Republic of China", 
            "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Weike", 
        "id": "sg:person.0611401313.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611401313.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "High Magnetic Field Laboratory, the Chinese Academy of Sciences, Hefei 230031, the People\u2019s Republic of China", 
            "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Haifeng", 
        "id": "sg:person.01115763175.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115763175.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "High Magnetic Field Laboratory, the Chinese Academy of Sciences, Hefei 230031, the People\u2019s Republic of China", 
            "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ning", 
        "givenName": "Wei", 
        "id": "sg:person.0623034075.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623034075.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, The People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "High Magnetic Field Laboratory, the Chinese Academy of Sciences, Hefei 230031, the People\u2019s Republic of China", 
            "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China", 
            "Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, The People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhaorong", 
        "id": "sg:person.012124067517.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124067517.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, South University of Science and Technology of China, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.263817.9", 
          "name": [
            "Department of Physics, South University of Science and Technology of China, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Hai-Zhou", 
        "id": "sg:person.0611467470.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611467470.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, The People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "High Magnetic Field Laboratory, the Chinese Academy of Sciences, Hefei 230031, the People\u2019s Republic of China", 
            "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China", 
            "Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, The People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yuheng", 
        "id": "sg:person.01117171420.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Science Center, Chinese Academy of Sciences, 230031, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.484710.e", 
          "name": [
            "High Magnetic Field Laboratory, the Chinese Academy of Sciences, Hefei 230031, the People\u2019s Republic of China", 
            "University of Science and Technology of China, 230026, Hefei, The People\u2019s Republic of China", 
            "Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, The People\u2019s Republic of China", 
            "Hefei Science Center, Chinese Academy of Sciences, 230031, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Mingliang", 
        "id": "sg:person.01304166075.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304166075.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys1838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009441077", 
          "https://doi.org/10.1038/nphys1838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030322940", 
          "https://doi.org/10.1038/srep05817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006657777", 
          "https://doi.org/10.1038/ncomms1588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029923694", 
          "https://doi.org/10.1038/nmat2609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010592494", 
          "https://doi.org/10.1038/nphys2351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009485853", 
          "https://doi.org/10.1038/nphys2388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022765676", 
          "https://doi.org/10.1038/nphys913"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-19", 
    "datePublishedReg": "2016-02-19", 
    "description": "Many exotic physics anticipated in topological insulators require a gap to be opened for their topological surface states by breaking time reversal symmetry. The gap opening has been achieved by doping magnetic impurities, which however inevitably create extra carriers and disorder that undermine the electronic transport. In contrast, the proximity to a ferromagnetic/ferrimagnetic insulator may improve the device quality, thus promises a better way to open the gap while minimizing the side-effects. Here, we grow thin single-crystal Sb1.9Bi0.1Te3 micro flakes on insulating ferrimagnet BaFe12O19 by using the van der Waals epitaxy technique. The micro flakes show a negative magnetoresistance in weak perpendicular fields below 50\u2009K, which can be quenched by increasing temperature. The signature implies the weak localization effect as its origin, which is absent in intrinsic topological insulators, unless a surface state gap is opened. The surface state gap is estimated to be 10\u2009meV by using the theory of the gap-induced weak localization effect. These results indicate that the magnetic proximity effect may open the gap for the topological surface attached to BaM insulating ferrimagnet. This heterostructure may pave the way for the realization of new physical effects as well as the potential applications of spintronics devices.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep21334", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8380028", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8379458", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8124808", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8117161", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6984612", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "weak localization effect", 
      "surface state gap", 
      "localization effects", 
      "topological insulators", 
      "state gap", 
      "topological surface states", 
      "intrinsic topological insulators", 
      "magnetic proximity effect", 
      "time-reversal symmetry", 
      "new physical effects", 
      "micro flakes", 
      "exotic physics", 
      "ferrimagnetic insulator", 
      "reversal symmetry", 
      "spintronic devices", 
      "gap opening", 
      "surface states", 
      "magnetic impurities", 
      "extra carriers", 
      "epitaxy technique", 
      "electronic transport", 
      "device quality", 
      "topological surface", 
      "perpendicular field", 
      "negative magnetoresistance", 
      "insulator", 
      "proximity effect", 
      "insulating ferrimagnet", 
      "physical effects", 
      "potential applications", 
      "flakes", 
      "BaFe12O19", 
      "MeV", 
      "gap", 
      "physics", 
      "heterostructures", 
      "ferrimagnet", 
      "magnetoresistance", 
      "symmetry", 
      "impurities", 
      "field", 
      "devices", 
      "realization", 
      "signatures", 
      "temperature", 
      "surface", 
      "state", 
      "carriers", 
      "transport", 
      "theory", 
      "effect", 
      "technique", 
      "origin", 
      "applications", 
      "way", 
      "proximity", 
      "contrast", 
      "results", 
      "opening", 
      "best way", 
      "quality", 
      "disorders"
    ], 
    "name": "Weak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19", 
    "pagination": "21334", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032032791"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep21334"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26891682"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep21334", 
      "https://app.dimensions.ai/details/publication/pub.1032032791"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_687.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep21334"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep21334'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep21334'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep21334'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep21334'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      94 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep21334 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N94078ae3e33a4784baeb93028c6b5baf
4 schema:citation sg:pub.10.1038/ncomms1588
5 sg:pub.10.1038/nmat2609
6 sg:pub.10.1038/nphys1838
7 sg:pub.10.1038/nphys2351
8 sg:pub.10.1038/nphys2388
9 sg:pub.10.1038/nphys913
10 sg:pub.10.1038/srep05817
11 schema:datePublished 2016-02-19
12 schema:datePublishedReg 2016-02-19
13 schema:description Many exotic physics anticipated in topological insulators require a gap to be opened for their topological surface states by breaking time reversal symmetry. The gap opening has been achieved by doping magnetic impurities, which however inevitably create extra carriers and disorder that undermine the electronic transport. In contrast, the proximity to a ferromagnetic/ferrimagnetic insulator may improve the device quality, thus promises a better way to open the gap while minimizing the side-effects. Here, we grow thin single-crystal Sb1.9Bi0.1Te3 micro flakes on insulating ferrimagnet BaFe12O19 by using the van der Waals epitaxy technique. The micro flakes show a negative magnetoresistance in weak perpendicular fields below 50 K, which can be quenched by increasing temperature. The signature implies the weak localization effect as its origin, which is absent in intrinsic topological insulators, unless a surface state gap is opened. The surface state gap is estimated to be 10 meV by using the theory of the gap-induced weak localization effect. These results indicate that the magnetic proximity effect may open the gap for the topological surface attached to BaM insulating ferrimagnet. This heterostructure may pave the way for the realization of new physical effects as well as the potential applications of spintronics devices.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N370cbdd047274d8d8d76c074c172f34a
17 Ne84ccab435404938b453694a765333ee
18 sg:journal.1045337
19 schema:keywords BaFe12O19
20 MeV
21 applications
22 best way
23 carriers
24 contrast
25 device quality
26 devices
27 disorders
28 effect
29 electronic transport
30 epitaxy technique
31 exotic physics
32 extra carriers
33 ferrimagnet
34 ferrimagnetic insulator
35 field
36 flakes
37 gap
38 gap opening
39 heterostructures
40 impurities
41 insulating ferrimagnet
42 insulator
43 intrinsic topological insulators
44 localization effects
45 magnetic impurities
46 magnetic proximity effect
47 magnetoresistance
48 micro flakes
49 negative magnetoresistance
50 new physical effects
51 opening
52 origin
53 perpendicular field
54 physical effects
55 physics
56 potential applications
57 proximity
58 proximity effect
59 quality
60 realization
61 results
62 reversal symmetry
63 signatures
64 spintronic devices
65 state
66 state gap
67 surface
68 surface state gap
69 surface states
70 symmetry
71 technique
72 temperature
73 theory
74 time-reversal symmetry
75 topological insulators
76 topological surface
77 topological surface states
78 transport
79 way
80 weak localization effect
81 schema:name Weak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19
82 schema:pagination 21334
83 schema:productId N3717fbf084b14190a62ea665e9c4b4ce
84 N83a17e544acd420e944d5457862d537d
85 Nfa04ab44076a4289b7c2835974ee9abc
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032032791
87 https://doi.org/10.1038/srep21334
88 schema:sdDatePublished 2022-09-02T15:58
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N11f6cbc742fc4a34bbf142ea4652c42e
91 schema:url https://doi.org/10.1038/srep21334
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N11f6cbc742fc4a34bbf142ea4652c42e schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N2fa5849b25584058a96eb49a69b70f46 rdf:first sg:person.0611467470.52
98 rdf:rest N56d76e466aed44cbbfa0f2b909644adb
99 N370cbdd047274d8d8d76c074c172f34a schema:volumeNumber 6
100 rdf:type schema:PublicationVolume
101 N3717fbf084b14190a62ea665e9c4b4ce schema:name doi
102 schema:value 10.1038/srep21334
103 rdf:type schema:PropertyValue
104 N445a9d1703b64aa4afe12f0d3023de36 rdf:first sg:person.012124067517.77
105 rdf:rest N2fa5849b25584058a96eb49a69b70f46
106 N4e11ff8e40554a719ce1b92380306d5b rdf:first sg:person.0611401313.48
107 rdf:rest N89db855956534af1ab19e11e638019b9
108 N56d76e466aed44cbbfa0f2b909644adb rdf:first sg:person.01117171420.13
109 rdf:rest N967b46c658524be0adafe26f134321dc
110 N6e9b1c6059f44e9389a3ea17fc1e12d6 rdf:first sg:person.010434050445.36
111 rdf:rest Nd322632eba9e42139a3be55c99d5d7a0
112 N83a17e544acd420e944d5457862d537d schema:name dimensions_id
113 schema:value pub.1032032791
114 rdf:type schema:PropertyValue
115 N89db855956534af1ab19e11e638019b9 rdf:first sg:person.01115763175.41
116 rdf:rest Nf17897584b9c400fbb5d1f35413ddcfe
117 N94078ae3e33a4784baeb93028c6b5baf rdf:first sg:person.07505360532.88
118 rdf:rest N6e9b1c6059f44e9389a3ea17fc1e12d6
119 N967b46c658524be0adafe26f134321dc rdf:first sg:person.01304166075.42
120 rdf:rest rdf:nil
121 Nd322632eba9e42139a3be55c99d5d7a0 rdf:first sg:person.01002743020.54
122 rdf:rest N4e11ff8e40554a719ce1b92380306d5b
123 Ne84ccab435404938b453694a765333ee schema:issueNumber 1
124 rdf:type schema:PublicationIssue
125 Nf17897584b9c400fbb5d1f35413ddcfe rdf:first sg:person.0623034075.08
126 rdf:rest N445a9d1703b64aa4afe12f0d3023de36
127 Nfa04ab44076a4289b7c2835974ee9abc schema:name pubmed_id
128 schema:value 26891682
129 rdf:type schema:PropertyValue
130 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
131 schema:name Physical Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
134 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
135 rdf:type schema:DefinedTerm
136 sg:grant.6984612 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21334
137 rdf:type schema:MonetaryGrant
138 sg:grant.8117161 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21334
139 rdf:type schema:MonetaryGrant
140 sg:grant.8124808 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21334
141 rdf:type schema:MonetaryGrant
142 sg:grant.8379458 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21334
143 rdf:type schema:MonetaryGrant
144 sg:grant.8380028 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21334
145 rdf:type schema:MonetaryGrant
146 sg:journal.1045337 schema:issn 2045-2322
147 schema:name Scientific Reports
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.01002743020.54 schema:affiliation grid-institutes:grid.59053.3a
151 schema:familyName Yang
152 schema:givenName Jiyong
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002743020.54
154 rdf:type schema:Person
155 sg:person.010434050445.36 schema:affiliation grid-institutes:grid.59053.3a
156 schema:familyName Wang
157 schema:givenName Ning
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434050445.36
159 rdf:type schema:Person
160 sg:person.01115763175.41 schema:affiliation grid-institutes:grid.59053.3a
161 schema:familyName Du
162 schema:givenName Haifeng
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115763175.41
164 rdf:type schema:Person
165 sg:person.01117171420.13 schema:affiliation grid-institutes:grid.509497.6
166 schema:familyName Zhang
167 schema:givenName Yuheng
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13
169 rdf:type schema:Person
170 sg:person.012124067517.77 schema:affiliation grid-institutes:grid.509497.6
171 schema:familyName Yang
172 schema:givenName Zhaorong
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124067517.77
174 rdf:type schema:Person
175 sg:person.01304166075.42 schema:affiliation grid-institutes:grid.484710.e
176 schema:familyName Tian
177 schema:givenName Mingliang
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304166075.42
179 rdf:type schema:Person
180 sg:person.0611401313.48 schema:affiliation grid-institutes:grid.59053.3a
181 schema:familyName Wang
182 schema:givenName Weike
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611401313.48
184 rdf:type schema:Person
185 sg:person.0611467470.52 schema:affiliation grid-institutes:grid.263817.9
186 schema:familyName Lu
187 schema:givenName Hai-Zhou
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611467470.52
189 rdf:type schema:Person
190 sg:person.0623034075.08 schema:affiliation grid-institutes:grid.59053.3a
191 schema:familyName Ning
192 schema:givenName Wei
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623034075.08
194 rdf:type schema:Person
195 sg:person.07505360532.88 schema:affiliation grid-institutes:grid.59053.3a
196 schema:familyName Zheng
197 schema:givenName Guolin
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07505360532.88
199 rdf:type schema:Person
200 sg:pub.10.1038/ncomms1588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006657777
201 https://doi.org/10.1038/ncomms1588
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nmat2609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029923694
204 https://doi.org/10.1038/nmat2609
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nphys1838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009441077
207 https://doi.org/10.1038/nphys1838
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nphys2351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010592494
210 https://doi.org/10.1038/nphys2351
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nphys2388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009485853
213 https://doi.org/10.1038/nphys2388
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nphys913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022765676
216 https://doi.org/10.1038/nphys913
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/srep05817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030322940
219 https://doi.org/10.1038/srep05817
220 rdf:type schema:CreativeWork
221 grid-institutes:grid.263817.9 schema:alternateName Department of Physics, South University of Science and Technology of China, Shenzhen, China
222 schema:name Department of Physics, South University of Science and Technology of China, Shenzhen, China
223 rdf:type schema:Organization
224 grid-institutes:grid.484710.e schema:alternateName Hefei Science Center, Chinese Academy of Sciences, 230031, Hefei, Anhui, China
225 schema:name Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, The People’s Republic of China
226 Hefei Science Center, Chinese Academy of Sciences, 230031, Hefei, Anhui, China
227 High Magnetic Field Laboratory, the Chinese Academy of Sciences, Hefei 230031, the People’s Republic of China
228 University of Science and Technology of China, 230026, Hefei, The People’s Republic of China
229 rdf:type schema:Organization
230 grid-institutes:grid.509497.6 schema:alternateName Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, The People’s Republic of China
231 schema:name Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, The People’s Republic of China
232 High Magnetic Field Laboratory, the Chinese Academy of Sciences, Hefei 230031, the People’s Republic of China
233 University of Science and Technology of China, 230026, Hefei, The People’s Republic of China
234 rdf:type schema:Organization
235 grid-institutes:grid.59053.3a schema:alternateName University of Science and Technology of China, 230026, Hefei, The People’s Republic of China
236 schema:name High Magnetic Field Laboratory, the Chinese Academy of Sciences, Hefei 230031, the People’s Republic of China
237 University of Science and Technology of China, 230026, Hefei, The People’s Republic of China
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...