Ultra-fast photo-carrier relaxation in Mott insulators with short-range spin correlations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-17

AUTHORS

Martin Eckstein, Philipp Werner

ABSTRACT

Ultra-fast spectroscopy can reveal the interplay of charges with low energy degrees of freedom, which underlies the rich physics of correlated materials. As a potential glue for superconductivity, spin fluctuations in Mott insulators are of particular interest. A theoretical description of the coupled spin and charge degrees of freedom is challenging, because magnetic order is often only short-lived and short-ranged. In this work we theoretically investigate how the spin-charge interactions influence the relaxation of a two-dimensional Mott-Hubbard insulator after photo-excitation. We use a nonequilibrium variant of the dynamical cluster approximation, which, in contrast to single-site dynamical mean-field theory, captures the effect of short-range correlations. The relaxation time is found to scale with the strength of the nearest-neighbor spin correlations and can be 10–20 fs in the cuprates. Increasing the temperature or excitation density decreases the spin correlations and thus implies longer relaxation times. This may help to distinguish the effect of spin-fluctuations on the charge relaxation from the influence of other bosonic modes in the solid. More... »

PAGES

21235

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep21235

DOI

http://dx.doi.org/10.1038/srep21235

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015163419

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26883536


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, 22761, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, 22761, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eckstein", 
        "givenName": "Martin", 
        "id": "sg:person.0637717231.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637717231.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Fribourg, 1700, Fribourg, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8534.a", 
          "name": [
            "Department of Physics, University of Fribourg, 1700, Fribourg, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Werner", 
        "givenName": "Philipp", 
        "id": "sg:person.01240643767.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240643767.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s100510050077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008870176", 
          "https://doi.org/10.1007/s100510050077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020703973", 
          "https://doi.org/10.1038/ncomms7708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045016085", 
          "https://doi.org/10.1038/nphys3265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011285480", 
          "https://doi.org/10.1038/ncomms1354"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-17", 
    "datePublishedReg": "2016-02-17", 
    "description": "Ultra-fast spectroscopy can reveal the interplay of charges with low energy degrees of freedom, which underlies the rich physics of correlated materials. As a potential glue for superconductivity, spin fluctuations in Mott insulators are of particular interest. A theoretical description of the coupled spin and charge degrees of freedom is challenging, because magnetic order is often only short-lived and short-ranged. In this work we theoretically investigate how the spin-charge interactions influence the relaxation of a two-dimensional Mott-Hubbard insulator after photo-excitation. We use a nonequilibrium variant of the dynamical cluster approximation, which, in contrast to single-site dynamical mean-field theory, captures the effect of short-range correlations. The relaxation time is found to scale with the strength of the nearest-neighbor spin correlations and can be 10\u201320\u2009fs in the cuprates. Increasing the temperature or excitation density decreases the spin correlations and thus implies longer relaxation times. This may help to distinguish the effect of spin-fluctuations on the charge relaxation from the influence of other bosonic modes in the solid.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep21235", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3783802", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3123556", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "spin correlations", 
      "Mott insulator", 
      "single-site dynamical mean-field theory", 
      "nearest-neighbor spin correlations", 
      "dynamical mean-field theory", 
      "short-range spin correlations", 
      "ultra-fast spectroscopy", 
      "spin-charge interactions", 
      "dynamical cluster approximation", 
      "mean-field theory", 
      "short-range correlations", 
      "interplay of charge", 
      "two-dimensional Mott", 
      "low-energy degrees", 
      "relaxation time", 
      "rich physics", 
      "Hubbard insulators", 
      "excitation density", 
      "bosonic modes", 
      "magnetic order", 
      "long relaxation times", 
      "charge degrees", 
      "energy degrees", 
      "cluster approximation", 
      "theoretical description", 
      "insulator", 
      "charge relaxation", 
      "relaxation", 
      "superconductivity", 
      "cuprates", 
      "physics", 
      "spin", 
      "Mott", 
      "approximation", 
      "FS", 
      "spectroscopy", 
      "freedom", 
      "theory", 
      "charge", 
      "particular interest", 
      "fluctuations", 
      "density", 
      "mode", 
      "temperature", 
      "description", 
      "interplay", 
      "interaction", 
      "correlation", 
      "materials", 
      "order", 
      "effect", 
      "time", 
      "degree", 
      "work", 
      "strength", 
      "interest", 
      "contrast", 
      "variants", 
      "influence", 
      "glue"
    ], 
    "name": "Ultra-fast photo-carrier relaxation in Mott insulators with short-range spin correlations", 
    "pagination": "21235", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015163419"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep21235"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26883536"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep21235", 
      "https://app.dimensions.ai/details/publication/pub.1015163419"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_692.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep21235"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep21235'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep21235'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep21235'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep21235'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      89 URIs      77 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep21235 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Neca5a6735b0247a0bca34e8dba39e8b5
4 schema:citation sg:pub.10.1007/s100510050077
5 sg:pub.10.1038/ncomms1354
6 sg:pub.10.1038/ncomms7708
7 sg:pub.10.1038/nphys3265
8 schema:datePublished 2016-02-17
9 schema:datePublishedReg 2016-02-17
10 schema:description Ultra-fast spectroscopy can reveal the interplay of charges with low energy degrees of freedom, which underlies the rich physics of correlated materials. As a potential glue for superconductivity, spin fluctuations in Mott insulators are of particular interest. A theoretical description of the coupled spin and charge degrees of freedom is challenging, because magnetic order is often only short-lived and short-ranged. In this work we theoretically investigate how the spin-charge interactions influence the relaxation of a two-dimensional Mott-Hubbard insulator after photo-excitation. We use a nonequilibrium variant of the dynamical cluster approximation, which, in contrast to single-site dynamical mean-field theory, captures the effect of short-range correlations. The relaxation time is found to scale with the strength of the nearest-neighbor spin correlations and can be 10–20 fs in the cuprates. Increasing the temperature or excitation density decreases the spin correlations and thus implies longer relaxation times. This may help to distinguish the effect of spin-fluctuations on the charge relaxation from the influence of other bosonic modes in the solid.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N803f61371ef448fc9b91ade1c6ead891
14 Nba4465a1b23b45f49e54644509f3149b
15 sg:journal.1045337
16 schema:keywords FS
17 Hubbard insulators
18 Mott
19 Mott insulator
20 approximation
21 bosonic modes
22 charge
23 charge degrees
24 charge relaxation
25 cluster approximation
26 contrast
27 correlation
28 cuprates
29 degree
30 density
31 description
32 dynamical cluster approximation
33 dynamical mean-field theory
34 effect
35 energy degrees
36 excitation density
37 fluctuations
38 freedom
39 glue
40 influence
41 insulator
42 interaction
43 interest
44 interplay
45 interplay of charge
46 long relaxation times
47 low-energy degrees
48 magnetic order
49 materials
50 mean-field theory
51 mode
52 nearest-neighbor spin correlations
53 order
54 particular interest
55 physics
56 relaxation
57 relaxation time
58 rich physics
59 short-range correlations
60 short-range spin correlations
61 single-site dynamical mean-field theory
62 spectroscopy
63 spin
64 spin correlations
65 spin-charge interactions
66 strength
67 superconductivity
68 temperature
69 theoretical description
70 theory
71 time
72 two-dimensional Mott
73 ultra-fast spectroscopy
74 variants
75 work
76 schema:name Ultra-fast photo-carrier relaxation in Mott insulators with short-range spin correlations
77 schema:pagination 21235
78 schema:productId N4e963d87f577416397ff256ae8058a83
79 Na078d09f86fd4fb8965d0b566920d431
80 Nb8444089751c4a98be850f5d70cd15a0
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015163419
82 https://doi.org/10.1038/srep21235
83 schema:sdDatePublished 2022-12-01T06:34
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Nf1adfd5ae0d44454b98c5a9bd6838e75
86 schema:url https://doi.org/10.1038/srep21235
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N4e963d87f577416397ff256ae8058a83 schema:name pubmed_id
91 schema:value 26883536
92 rdf:type schema:PropertyValue
93 N803f61371ef448fc9b91ade1c6ead891 schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 Na078d09f86fd4fb8965d0b566920d431 schema:name doi
96 schema:value 10.1038/srep21235
97 rdf:type schema:PropertyValue
98 Nb8444089751c4a98be850f5d70cd15a0 schema:name dimensions_id
99 schema:value pub.1015163419
100 rdf:type schema:PropertyValue
101 Nba4465a1b23b45f49e54644509f3149b schema:volumeNumber 6
102 rdf:type schema:PublicationVolume
103 Nd32a0a7ad32a414482e0e5c0a3530fc7 rdf:first sg:person.01240643767.20
104 rdf:rest rdf:nil
105 Neca5a6735b0247a0bca34e8dba39e8b5 rdf:first sg:person.0637717231.18
106 rdf:rest Nd32a0a7ad32a414482e0e5c0a3530fc7
107 Nf1adfd5ae0d44454b98c5a9bd6838e75 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
113 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
114 rdf:type schema:DefinedTerm
115 sg:grant.3123556 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21235
116 rdf:type schema:MonetaryGrant
117 sg:grant.3783802 http://pending.schema.org/fundedItem sg:pub.10.1038/srep21235
118 rdf:type schema:MonetaryGrant
119 sg:journal.1045337 schema:issn 2045-2322
120 schema:name Scientific Reports
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.01240643767.20 schema:affiliation grid-institutes:grid.8534.a
124 schema:familyName Werner
125 schema:givenName Philipp
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240643767.20
127 rdf:type schema:Person
128 sg:person.0637717231.18 schema:affiliation grid-institutes:grid.9026.d
129 schema:familyName Eckstein
130 schema:givenName Martin
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637717231.18
132 rdf:type schema:Person
133 sg:pub.10.1007/s100510050077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008870176
134 https://doi.org/10.1007/s100510050077
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/ncomms1354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011285480
137 https://doi.org/10.1038/ncomms1354
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/ncomms7708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020703973
140 https://doi.org/10.1038/ncomms7708
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nphys3265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045016085
143 https://doi.org/10.1038/nphys3265
144 rdf:type schema:CreativeWork
145 grid-institutes:grid.8534.a schema:alternateName Department of Physics, University of Fribourg, 1700, Fribourg, Switzerland
146 schema:name Department of Physics, University of Fribourg, 1700, Fribourg, Switzerland
147 rdf:type schema:Organization
148 grid-institutes:grid.9026.d schema:alternateName Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, 22761, Hamburg, Germany
149 schema:name Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, 22761, Hamburg, Germany
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...