Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08

AUTHORS

Rajesh Ramaswamy, Frank Jülicher

ABSTRACT

Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics. More... »

PAGES

20838

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep20838

DOI

http://dx.doi.org/10.1038/srep20838

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021407341

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26877263


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actin Cytoskeleton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actomyosin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Eukaryotic Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rheology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Viscosity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems (MPI-PKS), N\u00f6thnitzer Str. 38, 01187 Dresden, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramaswamy", 
        "givenName": "Rajesh", 
        "id": "sg:person.01055014575.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055014575.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems (MPI-PKS), N\u00f6thnitzer Str. 38, 01187 Dresden, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "J\u00fclicher", 
        "givenName": "Frank", 
        "id": "sg:person.0640775172.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640775172.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcp.2015.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000866527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12232-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000933605", 
          "https://doi.org/10.1007/978-3-319-12232-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12232-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000933605", 
          "https://doi.org/10.1007/978-3-319-12232-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.078101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000950540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.078101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000950540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2007.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001731119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001821281", 
          "https://doi.org/10.1038/nature09312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001821281", 
          "https://doi.org/10.1038/nature09312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002387502", 
          "https://doi.org/10.1038/nphys3224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003970050168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005185580", 
          "https://doi.org/10.1007/s003970050168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006276556", 
          "https://doi.org/10.1038/srep00154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/e2005-00002-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008254387", 
          "https://doi.org/10.1140/epje/e2005-00002-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm4012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008517866", 
          "https://doi.org/10.1038/nrm4012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/85/18008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009187151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/38532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011726815", 
          "https://doi.org/10.1038/38532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/38532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011726815", 
          "https://doi.org/10.1038/38532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcb.2012.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013307690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcb.2012.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013307690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10501-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013462473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-070909-104101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014391404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcb.2012.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018175382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02128237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018613447", 
          "https://doi.org/10.1007/bf02128237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02128237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018613447", 
          "https://doi.org/10.1007/bf02128237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1sm06077e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018985732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.228102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020887867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.228102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020887867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2976/1.3054712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023052697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/25/8/2245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027501736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cm.21229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027650519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.142.5.1301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030534669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/i2008-10364-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032784406", 
          "https://doi.org/10.1140/epje/i2008-10364-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm3120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034736665", 
          "https://doi.org/10.1038/nrm3120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.031921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038366015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.031921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038366015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1509304112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039075102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/dev.045872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040257798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.028102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043105330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.028102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043105330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2005.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044869302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048676417", 
          "https://doi.org/10.1038/ncomms1775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0sm01063d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052666306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/14/2/023001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059135646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.051912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060735278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.051912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060735278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.108302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.108302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.118102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.118102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1208619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464892"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08", 
    "datePublishedReg": "2016-08-01", 
    "description": "Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep20838", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer", 
    "pagination": "20838", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "65fe8f39c8e6722d3993d81c0d3af89fe1c8af9cecfaa2ff78aa374445e69733"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26877263"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep20838"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021407341"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep20838", 
      "https://app.dimensions.ai/details/publication/pub.1021407341"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2016/160215/srep20838/full/srep20838.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep20838'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep20838'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep20838'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep20838'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      77 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep20838 schema:about N15dbe05184a64387bcaf3bc006582593
2 N1b91cac6d89b4328be885a916335380e
3 N393fa52fdcf54f5c86c508bd1beb6e8d
4 N91d032fe9e464c7ebe27fcc3f36f4042
5 N9e0f45f4700e447bbcb8fb18f2a996e2
6 Nc08cbbc12a5e49eb8f1340d451691ea2
7 Nc8a49e96902747f1a3af560be99ef5db
8 Nce7538e3bd68436abb7f5121482ed38a
9 Ne5a82204522047c38fc958d345dab0a1
10 anzsrc-for:09
11 anzsrc-for:0915
12 schema:author N947d00584fd7469883a7eaf9b63bc15c
13 schema:citation sg:pub.10.1007/978-3-319-12232-8
14 sg:pub.10.1007/bf02128237
15 sg:pub.10.1007/s003970050168
16 sg:pub.10.1038/38532
17 sg:pub.10.1038/nature09312
18 sg:pub.10.1038/ncomms1775
19 sg:pub.10.1038/nphys3224
20 sg:pub.10.1038/nrm3120
21 sg:pub.10.1038/nrm4012
22 sg:pub.10.1038/srep00154
23 sg:pub.10.1140/epje/e2005-00002-5
24 sg:pub.10.1140/epje/i2008-10364-9
25 https://doi.org/10.1002/cm.21229
26 https://doi.org/10.1016/j.chaos.2005.02.015
27 https://doi.org/10.1016/j.jcp.2015.03.007
28 https://doi.org/10.1016/j.physrep.2007.02.018
29 https://doi.org/10.1016/j.tcb.2012.07.001
30 https://doi.org/10.1016/j.tcb.2012.10.009
31 https://doi.org/10.1039/c0sm01063d
32 https://doi.org/10.1039/c1sm06077e
33 https://doi.org/10.1073/pnas.1509304112
34 https://doi.org/10.1083/jcb.142.5.1301
35 https://doi.org/10.1088/0951-7715/25/8/2245
36 https://doi.org/10.1088/1367-2630/14/2/023001
37 https://doi.org/10.1103/physreve.74.051912
38 https://doi.org/10.1103/physreve.76.031921
39 https://doi.org/10.1103/physrevlett.110.108302
40 https://doi.org/10.1103/physrevlett.110.228102
41 https://doi.org/10.1103/physrevlett.75.4326
42 https://doi.org/10.1103/physrevlett.92.078101
43 https://doi.org/10.1103/physrevlett.96.028102
44 https://doi.org/10.1103/physrevlett.98.118102
45 https://doi.org/10.1103/revmodphys.85.1143
46 https://doi.org/10.1126/science.1208619
47 https://doi.org/10.1146/annurev-conmatphys-070909-104101
48 https://doi.org/10.1209/0295-5075/85/18008
49 https://doi.org/10.1209/epl/i2004-10501-2
50 https://doi.org/10.1242/dev.045872
51 https://doi.org/10.2976/1.3054712
52 schema:datePublished 2016-08
53 schema:datePublishedReg 2016-08-01
54 schema:description Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N6603550fec754364bcb0dda9fbf085d1
59 N7397aa1ff1af431eb2ef299ce41f8236
60 sg:journal.1045337
61 schema:name Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer
62 schema:pagination 20838
63 schema:productId N0991fd0795c44654b7352dad6003eb1a
64 N27f926bdfa554dbc9d3bd06bd26f82ff
65 N613ed449b3e7474aa28afc45ae58cbca
66 N98e106b3fc834ae997c04182f116c890
67 Nc84a1bb958b84b51a586312ed38ef71a
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021407341
69 https://doi.org/10.1038/srep20838
70 schema:sdDatePublished 2019-04-10T15:08
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Na6b8e3b5802d4f4899a4aadb2943d925
73 schema:url http://www.nature.com/srep/2016/160215/srep20838/full/srep20838.html
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0991fd0795c44654b7352dad6003eb1a schema:name readcube_id
78 schema:value 65fe8f39c8e6722d3993d81c0d3af89fe1c8af9cecfaa2ff78aa374445e69733
79 rdf:type schema:PropertyValue
80 N15dbe05184a64387bcaf3bc006582593 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Actomyosin
82 rdf:type schema:DefinedTerm
83 N1b91cac6d89b4328be885a916335380e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Actin Cytoskeleton
85 rdf:type schema:DefinedTerm
86 N27f926bdfa554dbc9d3bd06bd26f82ff schema:name doi
87 schema:value 10.1038/srep20838
88 rdf:type schema:PropertyValue
89 N33dbbe5b7f7b40ea9a09ea7336de0939 rdf:first sg:person.0640775172.62
90 rdf:rest rdf:nil
91 N393fa52fdcf54f5c86c508bd1beb6e8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Animals
93 rdf:type schema:DefinedTerm
94 N613ed449b3e7474aa28afc45ae58cbca schema:name pubmed_id
95 schema:value 26877263
96 rdf:type schema:PropertyValue
97 N6603550fec754364bcb0dda9fbf085d1 schema:issueNumber 1
98 rdf:type schema:PublicationIssue
99 N7397aa1ff1af431eb2ef299ce41f8236 schema:volumeNumber 6
100 rdf:type schema:PublicationVolume
101 N91d032fe9e464c7ebe27fcc3f36f4042 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Rheology
103 rdf:type schema:DefinedTerm
104 N947d00584fd7469883a7eaf9b63bc15c rdf:first sg:person.01055014575.03
105 rdf:rest N33dbbe5b7f7b40ea9a09ea7336de0939
106 N98e106b3fc834ae997c04182f116c890 schema:name nlm_unique_id
107 schema:value 101563288
108 rdf:type schema:PropertyValue
109 N9e0f45f4700e447bbcb8fb18f2a996e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Eukaryotic Cells
111 rdf:type schema:DefinedTerm
112 Na6b8e3b5802d4f4899a4aadb2943d925 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nc08cbbc12a5e49eb8f1340d451691ea2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Humans
116 rdf:type schema:DefinedTerm
117 Nc84a1bb958b84b51a586312ed38ef71a schema:name dimensions_id
118 schema:value pub.1021407341
119 rdf:type schema:PropertyValue
120 Nc8a49e96902747f1a3af560be99ef5db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Viscosity
122 rdf:type schema:DefinedTerm
123 Nce7538e3bd68436abb7f5121482ed38a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Elasticity
125 rdf:type schema:DefinedTerm
126 Ne5a82204522047c38fc958d345dab0a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Models, Biological
128 rdf:type schema:DefinedTerm
129 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
130 schema:name Engineering
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
133 schema:name Interdisciplinary Engineering
134 rdf:type schema:DefinedTerm
135 sg:journal.1045337 schema:issn 2045-2322
136 schema:name Scientific Reports
137 rdf:type schema:Periodical
138 sg:person.01055014575.03 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
139 schema:familyName Ramaswamy
140 schema:givenName Rajesh
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055014575.03
142 rdf:type schema:Person
143 sg:person.0640775172.62 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
144 schema:familyName Jülicher
145 schema:givenName Frank
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640775172.62
147 rdf:type schema:Person
148 sg:pub.10.1007/978-3-319-12232-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000933605
149 https://doi.org/10.1007/978-3-319-12232-8
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bf02128237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018613447
152 https://doi.org/10.1007/bf02128237
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s003970050168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005185580
155 https://doi.org/10.1007/s003970050168
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/38532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011726815
158 https://doi.org/10.1038/38532
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nature09312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001821281
161 https://doi.org/10.1038/nature09312
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/ncomms1775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048676417
164 https://doi.org/10.1038/ncomms1775
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nphys3224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002387502
167 https://doi.org/10.1038/nphys3224
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nrm3120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034736665
170 https://doi.org/10.1038/nrm3120
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nrm4012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008517866
173 https://doi.org/10.1038/nrm4012
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/srep00154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006276556
176 https://doi.org/10.1038/srep00154
177 rdf:type schema:CreativeWork
178 sg:pub.10.1140/epje/e2005-00002-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008254387
179 https://doi.org/10.1140/epje/e2005-00002-5
180 rdf:type schema:CreativeWork
181 sg:pub.10.1140/epje/i2008-10364-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032784406
182 https://doi.org/10.1140/epje/i2008-10364-9
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/cm.21229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027650519
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.chaos.2005.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044869302
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.jcp.2015.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000866527
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.physrep.2007.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001731119
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.tcb.2012.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013307690
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.tcb.2012.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018175382
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1039/c0sm01063d schema:sameAs https://app.dimensions.ai/details/publication/pub.1052666306
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1039/c1sm06077e schema:sameAs https://app.dimensions.ai/details/publication/pub.1018985732
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1073/pnas.1509304112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039075102
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1083/jcb.142.5.1301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030534669
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1088/0951-7715/25/8/2245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027501736
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1088/1367-2630/14/2/023001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059135646
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physreve.74.051912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060735278
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physreve.76.031921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038366015
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.110.108302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761274
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.110.228102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020887867
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevlett.75.4326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812278
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.92.078101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000950540
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.96.028102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043105330
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.98.118102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833747
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/revmodphys.85.1143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839747
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1208619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464892
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1146/annurev-conmatphys-070909-104101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014391404
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1209/0295-5075/85/18008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009187151
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1209/epl/i2004-10501-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013462473
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1242/dev.045872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040257798
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2976/1.3054712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023052697
237 rdf:type schema:CreativeWork
238 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
239 schema:name Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Nöthnitzer Str. 38, 01187 Dresden, Germany.
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...