Operational resilience: concepts, design and analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05

AUTHORS

Alexander A. Ganin, Emanuele Massaro, Alexander Gutfraind, Nicolas Steen, Jeffrey M. Keisler, Alexander Kott, Rami Mangoubi, Igor Linkov

ABSTRACT

Building resilience into today's complex infrastructures is critical to the daily functioning of society and its ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This study proposes quantitative measures that capture and implement the definition of engineering resilience advanced by the National Academy of Sciences. The approach is applicable across physical, information, and social domains. It evaluates the critical functionality, defined as a performance function of time set by the stakeholders. Critical functionality is a source of valuable information, such as the integrated system resilience over a time interval, and its robustness. The paper demonstrates the formulation on two classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks. For both models synthetic case studies are used to explore trends. For the first class, the approach is also applied to the Linux operating system. Results indicate that desired resilience and robustness levels are achievable by trading off different design parameters, such as redundancy, node recovery time, and backup supply available. The nonlinear relationship between network parameters and resilience levels confirms the utility of the proposed approach, which is of benefit to analysts and designers of complex systems and networks. More... »

PAGES

19540

References to SciGraph publications

  • 2010-04-15. Complex networks: The fragility of interdependency in NATURE
  • 1984-01. The complexity and stability of ecosystems in NATURE
  • 2013-12. Resilience metrics for cyber systems in ENVIRONMENT SYSTEMS AND DECISIONS
  • 2010-04-15. Catastrophic cascade of failures in interdependent networks in NATURE
  • 2014-01. Spontaneous recovery in dynamical networks in NATURE PHYSICS
  • 2014-10. Vulnerability of network of networks in THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS
  • 2010. A Framework for Assessing the Resilience of Infrastructure and Economic Systems in SUSTAINABLE AND RESILIENT CRITICAL INFRASTRUCTURE SYSTEMS
  • 2014-06. Changing the resilience paradigm in NATURE CLIMATE CHANGE
  • 2014. Networks of Networks: The Last Frontier of Complexity in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep19540

    DOI

    http://dx.doi.org/10.1038/srep19540

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001195145

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26782180


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disasters", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "National Academy of Sciences (U.S.)", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "United States", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Virginia", 
              "id": "https://www.grid.ac/institutes/grid.27755.32", 
              "name": [
                "U.S. Army Corps of Engineers \u2013 Engineer Research and Development Center, Environmental Laboratory, Concord, MA, 01742, USA", 
                "University of Virginia, Department of Systems and Information Engineering, Charlottesville, VA, 22904, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ganin", 
            "givenName": "Alexander A.", 
            "id": "sg:person.01060462401.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060462401.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carnegie Mellon University", 
              "id": "https://www.grid.ac/institutes/grid.147455.6", 
              "name": [
                "U.S. Army Corps of Engineers \u2013 Engineer Research and Development Center, Environmental Laboratory, Concord, MA, 01742, USA", 
                "Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA, 15213, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Massaro", 
            "givenName": "Emanuele", 
            "id": "sg:person.014702011603.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702011603.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Illinois at Chicago", 
              "id": "https://www.grid.ac/institutes/grid.185648.6", 
              "name": [
                "University of Illinois at Chicago, School of Public Health, Chicago, IL, 60612, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gutfraind", 
            "givenName": "Alexander", 
            "id": "sg:person.0773430656.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773430656.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "U.S. Army Corps of Engineers \u2013 Engineer Research and Development Center, Environmental Laboratory, Concord, MA, 01742, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Steen", 
            "givenName": "Nicolas", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Boston", 
              "id": "https://www.grid.ac/institutes/grid.266685.9", 
              "name": [
                "University of Massachusetts Boston, College of Management, Boston, MA, 02125, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keisler", 
            "givenName": "Jeffrey M.", 
            "id": "sg:person.0660772007.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660772007.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "United States Army Research Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.420282.e", 
              "name": [
                "U.S. Army Research Laboratory, Network Science Division, Adelphi, MD, 20783, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kott", 
            "givenName": "Alexander", 
            "id": "sg:person.011746240447.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011746240447.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Draper Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.417533.7", 
              "name": [
                "Charles Stark Draper Laboratory, Cambridge, MA, 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mangoubi", 
            "givenName": "Rami", 
            "id": "sg:person.0743231176.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743231176.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "U.S. Army Corps of Engineers \u2013 Engineer Research and Development Center, Environmental Laboratory, Concord, MA, 01742, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Linkov", 
            "givenName": "Igor", 
            "id": "sg:person.01226705432.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226705432.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1146/annurev.es.04.110173.000245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000044783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.5468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000282463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.5468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000282463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1300832110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002095784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1193/1.1623497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007134947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.011027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009464573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.011027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009464573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engstruct.2010.08.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009677147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010370510", 
              "https://doi.org/10.1038/nature08932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010370510", 
              "https://doi.org/10.1038/nature08932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013393363", 
              "https://doi.org/10.1038/nclimate2227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.048701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013649274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.048701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013649274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1539-6924.2012.01885.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024154316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0914771107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026371631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.90.052817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028569029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.90.052817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028569029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-03518-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031387446", 
              "https://doi.org/10.1007/978-3-319-03518-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-03518-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031387446", 
              "https://doi.org/10.1007/978-3-319-03518-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10669-013-9485-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032078372", 
              "https://doi.org/10.1007/s10669-013-9485-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.85.045102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032371241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.85.045102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032371241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjst/e2014-02251-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037359119", 
              "https://doi.org/10.1140/epjst/e2014-02251-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es403443n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037550285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0090265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037831763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0508637103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038436724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1112122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039476649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1320880111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042522830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/307321a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042943740", 
              "https://doi.org/10.1038/307321a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/464984a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042986127", 
              "https://doi.org/10.1038/464984a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/464984a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042986127", 
              "https://doi.org/10.1038/464984a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.strusafe.2011.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043270588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/371920.372148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043288487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044429526", 
              "https://doi.org/10.1038/nphys2819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.71.027103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044634740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.71.027103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044634740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-11405-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046517097", 
              "https://doi.org/10.1007/978-3-642-11405-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2014.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047991629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2202/1547-7355.1675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048828786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ress.2015.03.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052103292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac00042a721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054968075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)is.1943-555x.0000177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057637928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4737204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058055453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.712151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsyst.2009.2017396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061338785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.2012.2209975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061478500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnet.2011.2161329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061715432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1075096.1075101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099239659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1075096.1075101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099239659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1106831532", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781118033104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106831532"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-05", 
        "datePublishedReg": "2016-05-01", 
        "description": "Building resilience into today's complex infrastructures is critical to the daily functioning of society and its ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This study proposes quantitative measures that capture and implement the definition of engineering resilience advanced by the National Academy of Sciences. The approach is applicable across physical, information, and social domains. It evaluates the critical functionality, defined as a performance function of time set by the stakeholders. Critical functionality is a source of valuable information, such as the integrated system resilience over a time interval, and its robustness. The paper demonstrates the formulation on two classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks. For both models synthetic case studies are used to explore trends. For the first class, the approach is also applied to the Linux operating system. Results indicate that desired resilience and robustness levels are achievable by trading off different design parameters, such as redundancy, node recovery time, and backup supply available. The nonlinear relationship between network parameters and resilience levels confirms the utility of the proposed approach, which is of benefit to analysts and designers of complex systems and networks. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/srep19540", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Operational resilience: concepts, design and analysis", 
        "pagination": "19540", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "05b1ab649d6b9181a9e70d3468da4ed56319ef92129407ea16f0f423e2c9bea3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26782180"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep19540"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001195145"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep19540", 
          "https://app.dimensions.ai/details/publication/pub.1001195145"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000579.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/srep19540"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep19540'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep19540'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep19540'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep19540'


     

    This table displays all metadata directly associated to this object as RDF triples.

    288 TRIPLES      21 PREDICATES      75 URIs      26 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep19540 schema:about N457b1ccdf4c8445eae93e237238c5665
    2 N837d4e188c0b4ab98677525011f8b92c
    3 N83ae05a892a0425e886ceccf43789dfa
    4 N9590cb21b35e470891230950dfb58c14
    5 Nc6b669ffb5c24e39adc1b878cb56cea2
    6 anzsrc-for:08
    7 anzsrc-for:0806
    8 schema:author N6c9839d396a24227bd9cd715f32cf743
    9 schema:citation sg:pub.10.1007/978-3-319-03518-5
    10 sg:pub.10.1007/978-3-642-11405-2_3
    11 sg:pub.10.1007/s10669-013-9485-y
    12 sg:pub.10.1038/307321a0
    13 sg:pub.10.1038/464984a
    14 sg:pub.10.1038/nature08932
    15 sg:pub.10.1038/nclimate2227
    16 sg:pub.10.1038/nphys2819
    17 sg:pub.10.1140/epjst/e2014-02251-6
    18 https://app.dimensions.ai/details/publication/pub.1106831532
    19 https://doi.org/10.1002/9781118033104
    20 https://doi.org/10.1016/j.engstruct.2010.08.008
    21 https://doi.org/10.1016/j.physrep.2014.07.001
    22 https://doi.org/10.1016/j.ress.2015.03.011
    23 https://doi.org/10.1016/j.strusafe.2011.12.004
    24 https://doi.org/10.1021/ac00042a721
    25 https://doi.org/10.1021/es403443n
    26 https://doi.org/10.1061/(asce)is.1943-555x.0000177
    27 https://doi.org/10.1063/1.4737204
    28 https://doi.org/10.1073/pnas.0508637103
    29 https://doi.org/10.1073/pnas.0914771107
    30 https://doi.org/10.1073/pnas.1300832110
    31 https://doi.org/10.1073/pnas.1320880111
    32 https://doi.org/10.1103/physreve.71.027103
    33 https://doi.org/10.1103/physreve.85.045102
    34 https://doi.org/10.1103/physreve.90.052817
    35 https://doi.org/10.1103/physrevlett.105.048701
    36 https://doi.org/10.1103/physrevlett.85.5468
    37 https://doi.org/10.1103/physrevx.5.011027
    38 https://doi.org/10.1109/72.712151
    39 https://doi.org/10.1109/jsyst.2009.2017396
    40 https://doi.org/10.1109/tac.2012.2209975
    41 https://doi.org/10.1109/tnet.2011.2161329
    42 https://doi.org/10.1111/j.1539-6924.2012.01885.x
    43 https://doi.org/10.1126/science.1112122
    44 https://doi.org/10.1145/371920.372148
    45 https://doi.org/10.1146/annurev.es.04.110173.000245
    46 https://doi.org/10.1193/1.1623497
    47 https://doi.org/10.1371/journal.pone.0090265
    48 https://doi.org/10.2202/1547-7355.1675
    49 https://doi.org/10.3115/1075096.1075101
    50 schema:datePublished 2016-05
    51 schema:datePublishedReg 2016-05-01
    52 schema:description Building resilience into today's complex infrastructures is critical to the daily functioning of society and its ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This study proposes quantitative measures that capture and implement the definition of engineering resilience advanced by the National Academy of Sciences. The approach is applicable across physical, information, and social domains. It evaluates the critical functionality, defined as a performance function of time set by the stakeholders. Critical functionality is a source of valuable information, such as the integrated system resilience over a time interval, and its robustness. The paper demonstrates the formulation on two classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks. For both models synthetic case studies are used to explore trends. For the first class, the approach is also applied to the Linux operating system. Results indicate that desired resilience and robustness levels are achievable by trading off different design parameters, such as redundancy, node recovery time, and backup supply available. The nonlinear relationship between network parameters and resilience levels confirms the utility of the proposed approach, which is of benefit to analysts and designers of complex systems and networks.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree true
    56 schema:isPartOf N08ac0d8fa3044ccb83e7a9393e58213c
    57 N7452ab7f1cbd4f7ba265b1b656deb8cc
    58 sg:journal.1045337
    59 schema:name Operational resilience: concepts, design and analysis
    60 schema:pagination 19540
    61 schema:productId N23ed71952095498f8c51234529817942
    62 N7631b0129ced43acbc770350ec3d60a2
    63 N98572affcf8a419f9c774bcc39944b32
    64 Nae22254204ff49249f2c825c79500841
    65 Nf6bf201a4ff446ebaf060e1ee65f2fd2
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001195145
    67 https://doi.org/10.1038/srep19540
    68 schema:sdDatePublished 2019-04-10T18:30
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher N3fce0f5232804b3c8514214017ab277f
    71 schema:url http://www.nature.com/articles/srep19540
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N046e7521d34f4b68b39fd8867155a368 schema:name U.S. Army Corps of Engineers – Engineer Research and Development Center, Environmental Laboratory, Concord, MA, 01742, USA
    76 rdf:type schema:Organization
    77 N08ac0d8fa3044ccb83e7a9393e58213c schema:volumeNumber 6
    78 rdf:type schema:PublicationVolume
    79 N23ed71952095498f8c51234529817942 schema:name readcube_id
    80 schema:value 05b1ab649d6b9181a9e70d3468da4ed56319ef92129407ea16f0f423e2c9bea3
    81 rdf:type schema:PropertyValue
    82 N3fce0f5232804b3c8514214017ab277f schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N457b1ccdf4c8445eae93e237238c5665 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Disasters
    86 rdf:type schema:DefinedTerm
    87 N51bf8b4c1adb43bb83587bdd659f71f6 schema:affiliation N046e7521d34f4b68b39fd8867155a368
    88 schema:familyName Steen
    89 schema:givenName Nicolas
    90 rdf:type schema:Person
    91 N5db26b90c36b4fcd989ceb86403dfdf4 rdf:first sg:person.0660772007.12
    92 rdf:rest Nd46ffe7204374af3991664ef3c230101
    93 N6c9839d396a24227bd9cd715f32cf743 rdf:first sg:person.01060462401.20
    94 rdf:rest N9d0dbd5d0787496897c18ad7e4661ec5
    95 N7452ab7f1cbd4f7ba265b1b656deb8cc schema:issueNumber 1
    96 rdf:type schema:PublicationIssue
    97 N7631b0129ced43acbc770350ec3d60a2 schema:name dimensions_id
    98 schema:value pub.1001195145
    99 rdf:type schema:PropertyValue
    100 N7bdaa89573094186a8edaced50682136 rdf:first N51bf8b4c1adb43bb83587bdd659f71f6
    101 rdf:rest N5db26b90c36b4fcd989ceb86403dfdf4
    102 N837d4e188c0b4ab98677525011f8b92c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Models, Theoretical
    104 rdf:type schema:DefinedTerm
    105 N83ae05a892a0425e886ceccf43789dfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name United States
    107 rdf:type schema:DefinedTerm
    108 N8cd518160fd34d6bbc5d2f28d9b572f5 rdf:first sg:person.0773430656.33
    109 rdf:rest N7bdaa89573094186a8edaced50682136
    110 N94f058120741489ab0fe6fd95aff8a92 rdf:first sg:person.0743231176.09
    111 rdf:rest Nd8fc99d1753e4d50b356ea5bcf4682de
    112 N9590cb21b35e470891230950dfb58c14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Software
    114 rdf:type schema:DefinedTerm
    115 N98572affcf8a419f9c774bcc39944b32 schema:name doi
    116 schema:value 10.1038/srep19540
    117 rdf:type schema:PropertyValue
    118 N9876237dcb014f06b4f31082e191e910 schema:name U.S. Army Corps of Engineers – Engineer Research and Development Center, Environmental Laboratory, Concord, MA, 01742, USA
    119 rdf:type schema:Organization
    120 N9d0dbd5d0787496897c18ad7e4661ec5 rdf:first sg:person.014702011603.43
    121 rdf:rest N8cd518160fd34d6bbc5d2f28d9b572f5
    122 Nae22254204ff49249f2c825c79500841 schema:name pubmed_id
    123 schema:value 26782180
    124 rdf:type schema:PropertyValue
    125 Nc6b669ffb5c24e39adc1b878cb56cea2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name National Academy of Sciences (U.S.)
    127 rdf:type schema:DefinedTerm
    128 Nd46ffe7204374af3991664ef3c230101 rdf:first sg:person.011746240447.08
    129 rdf:rest N94f058120741489ab0fe6fd95aff8a92
    130 Nd8fc99d1753e4d50b356ea5bcf4682de rdf:first sg:person.01226705432.22
    131 rdf:rest rdf:nil
    132 Nf6bf201a4ff446ebaf060e1ee65f2fd2 schema:name nlm_unique_id
    133 schema:value 101563288
    134 rdf:type schema:PropertyValue
    135 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Information and Computing Sciences
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Information Systems
    140 rdf:type schema:DefinedTerm
    141 sg:journal.1045337 schema:issn 2045-2322
    142 schema:name Scientific Reports
    143 rdf:type schema:Periodical
    144 sg:person.01060462401.20 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
    145 schema:familyName Ganin
    146 schema:givenName Alexander A.
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060462401.20
    148 rdf:type schema:Person
    149 sg:person.011746240447.08 schema:affiliation https://www.grid.ac/institutes/grid.420282.e
    150 schema:familyName Kott
    151 schema:givenName Alexander
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011746240447.08
    153 rdf:type schema:Person
    154 sg:person.01226705432.22 schema:affiliation N9876237dcb014f06b4f31082e191e910
    155 schema:familyName Linkov
    156 schema:givenName Igor
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226705432.22
    158 rdf:type schema:Person
    159 sg:person.014702011603.43 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
    160 schema:familyName Massaro
    161 schema:givenName Emanuele
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702011603.43
    163 rdf:type schema:Person
    164 sg:person.0660772007.12 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
    165 schema:familyName Keisler
    166 schema:givenName Jeffrey M.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660772007.12
    168 rdf:type schema:Person
    169 sg:person.0743231176.09 schema:affiliation https://www.grid.ac/institutes/grid.417533.7
    170 schema:familyName Mangoubi
    171 schema:givenName Rami
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743231176.09
    173 rdf:type schema:Person
    174 sg:person.0773430656.33 schema:affiliation https://www.grid.ac/institutes/grid.185648.6
    175 schema:familyName Gutfraind
    176 schema:givenName Alexander
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773430656.33
    178 rdf:type schema:Person
    179 sg:pub.10.1007/978-3-319-03518-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031387446
    180 https://doi.org/10.1007/978-3-319-03518-5
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/978-3-642-11405-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046517097
    183 https://doi.org/10.1007/978-3-642-11405-2_3
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s10669-013-9485-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032078372
    186 https://doi.org/10.1007/s10669-013-9485-y
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/307321a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042943740
    189 https://doi.org/10.1038/307321a0
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/464984a schema:sameAs https://app.dimensions.ai/details/publication/pub.1042986127
    192 https://doi.org/10.1038/464984a
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nature08932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010370510
    195 https://doi.org/10.1038/nature08932
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nclimate2227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013393363
    198 https://doi.org/10.1038/nclimate2227
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nphys2819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044429526
    201 https://doi.org/10.1038/nphys2819
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1140/epjst/e2014-02251-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037359119
    204 https://doi.org/10.1140/epjst/e2014-02251-6
    205 rdf:type schema:CreativeWork
    206 https://app.dimensions.ai/details/publication/pub.1106831532 schema:CreativeWork
    207 https://doi.org/10.1002/9781118033104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106831532
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/j.engstruct.2010.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009677147
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/j.physrep.2014.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047991629
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/j.ress.2015.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052103292
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/j.strusafe.2011.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043270588
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1021/ac00042a721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054968075
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1021/es403443n schema:sameAs https://app.dimensions.ai/details/publication/pub.1037550285
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1061/(asce)is.1943-555x.0000177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057637928
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1063/1.4737204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058055453
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1073/pnas.0508637103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038436724
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1073/pnas.0914771107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026371631
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1073/pnas.1300832110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002095784
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1073/pnas.1320880111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042522830
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1103/physreve.71.027103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044634740
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1103/physreve.85.045102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032371241
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1103/physreve.90.052817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028569029
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1103/physrevlett.105.048701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013649274
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1103/physrevlett.85.5468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000282463
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1103/physrevx.5.011027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009464573
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1109/72.712151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219065
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1109/jsyst.2009.2017396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061338785
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1109/tac.2012.2209975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061478500
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1109/tnet.2011.2161329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061715432
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1111/j.1539-6924.2012.01885.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024154316
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1126/science.1112122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039476649
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1145/371920.372148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043288487
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1146/annurev.es.04.110173.000245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000044783
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1193/1.1623497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007134947
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1371/journal.pone.0090265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037831763
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.2202/1547-7355.1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048828786
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.3115/1075096.1075101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099239659
    268 rdf:type schema:CreativeWork
    269 https://www.grid.ac/institutes/grid.147455.6 schema:alternateName Carnegie Mellon University
    270 schema:name Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA, 15213, USA
    271 U.S. Army Corps of Engineers – Engineer Research and Development Center, Environmental Laboratory, Concord, MA, 01742, USA
    272 rdf:type schema:Organization
    273 https://www.grid.ac/institutes/grid.185648.6 schema:alternateName University of Illinois at Chicago
    274 schema:name University of Illinois at Chicago, School of Public Health, Chicago, IL, 60612, USA
    275 rdf:type schema:Organization
    276 https://www.grid.ac/institutes/grid.266685.9 schema:alternateName University of Massachusetts Boston
    277 schema:name University of Massachusetts Boston, College of Management, Boston, MA, 02125, USA
    278 rdf:type schema:Organization
    279 https://www.grid.ac/institutes/grid.27755.32 schema:alternateName University of Virginia
    280 schema:name U.S. Army Corps of Engineers – Engineer Research and Development Center, Environmental Laboratory, Concord, MA, 01742, USA
    281 University of Virginia, Department of Systems and Information Engineering, Charlottesville, VA, 22904, USA
    282 rdf:type schema:Organization
    283 https://www.grid.ac/institutes/grid.417533.7 schema:alternateName Draper Laboratory
    284 schema:name Charles Stark Draper Laboratory, Cambridge, MA, 02139, USA
    285 rdf:type schema:Organization
    286 https://www.grid.ac/institutes/grid.420282.e schema:alternateName United States Army Research Laboratory
    287 schema:name U.S. Army Research Laboratory, Network Science Division, Adelphi, MD, 20783, USA
    288 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...