Thermomechanical Behavior of Molded Metallic Glass Nanowires View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01-20

AUTHORS

Daniel J. Magagnosc, Wen Chen, Golden Kumar, Jan Schroers, Daniel S. Gianola

ABSTRACT

Metallic glasses are disordered materials that offer the unique ability to perform thermoplastic forming operations at low thermal budget while preserving excellent mechanical properties such as high strength, large elastic strain limits and wear resistance owing to the metallic nature of bonding and lack of internal defects. Interest in molding micro- and nanoscale metallic glass objects is driven by the promise of robust and high performance micro- and nanoelectromechanical systems and miniature energy conversion devices. Yet accurate and efficient processing of these materials hinges on a robust understanding of their thermomechanical behavior. Here, we combine large-scale thermoplastic tensile deformation of collections of Pt-based amorphous nanowires with quantitative thermomechanical studies of individual nanowires in creep-like conditions to demonstrate that superplastic-like flow persists to small length scales. Systematic studies as a function of temperature, strain-rate and applied stress reveal the transition from Newtonian to non-Newtonian flow to be ubiquitous across the investigated length scales. However, we provide evidence that nanoscale specimens sustain greater free volume generation at elevated temperatures resulting in a flow transition at higher strain-rates than their bulk counterparts. Our results provide guidance for the design of thermoplastic processing methods and methods for verifying the flow response at the nanoscale. More... »

PAGES

19530

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep19530

DOI

http://dx.doi.org/10.1038/srep19530

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016844706

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26787400


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA", 
          "id": "http://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magagnosc", 
        "givenName": "Daniel J.", 
        "id": "sg:person.0677063700.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677063700.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Wen", 
        "id": "sg:person.0727424661.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727424661.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Texas Tech University, 79409, Lubbock, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.264784.b", 
          "name": [
            "Department of Mechanical Engineering, Texas Tech University, 79409, Lubbock, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Golden", 
        "id": "sg:person.01273672222.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273672222.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroers", 
        "givenName": "Jan", 
        "id": "sg:person.01145527322.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials, University of California, 93106, Santa Barbara, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA", 
            "Department of Materials, University of California, 93106, Santa Barbara, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gianola", 
        "givenName": "Daniel S.", 
        "id": "sg:person.01030354247.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030354247.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042156004", 
          "https://doi.org/10.1038/nmat2930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/187869b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018841532", 
          "https://doi.org/10.1038/187869b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030636840", 
          "https://doi.org/10.1038/nmat1984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-007-9410-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025438478", 
          "https://doi.org/10.1007/s11661-007-9410-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020300303", 
          "https://doi.org/10.1038/ncomms9157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018290838", 
          "https://doi.org/10.1038/nature07718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053179545", 
          "https://doi.org/10.1038/srep01096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015045324786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028078254", 
          "https://doi.org/10.1023/a:1015045324786"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01-20", 
    "datePublishedReg": "2016-01-20", 
    "description": "Metallic glasses are disordered materials that offer the unique ability to perform thermoplastic forming operations at low thermal budget while preserving excellent mechanical properties such as high strength, large elastic strain limits and wear resistance owing to the metallic nature of bonding and lack of internal defects. Interest in molding micro- and nanoscale metallic glass objects is driven by the promise of robust and high performance micro- and nanoelectromechanical systems and miniature energy conversion devices. Yet accurate and efficient processing of these materials hinges on a robust understanding of their thermomechanical behavior. Here, we combine large-scale thermoplastic tensile deformation of collections of Pt-based amorphous nanowires with quantitative thermomechanical studies of individual nanowires in creep-like conditions to demonstrate that superplastic-like flow persists to small length scales. Systematic studies as a function of temperature, strain-rate and applied stress reveal the transition from Newtonian to non-Newtonian flow to be ubiquitous across the investigated length scales. However, we provide evidence that nanoscale specimens sustain greater free volume generation at elevated temperatures resulting in a flow transition at higher strain-rates than their bulk counterparts. Our results provide guidance for the design of thermoplastic processing methods and methods for verifying the flow response at the nanoscale.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep19530", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3127424", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3487019", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3000925", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "thermomechanical behavior", 
      "large elastic strain limit", 
      "low thermal budget", 
      "metallic glass nanowires", 
      "excellent mechanical properties", 
      "elastic strain limit", 
      "high performance micro", 
      "free volume generation", 
      "thermoplastic processing methods", 
      "energy conversion devices", 
      "length scales", 
      "non-Newtonian flow", 
      "high strength", 
      "thermal budget", 
      "mechanical properties", 
      "strain limit", 
      "tensile deformation", 
      "amorphous nanowires", 
      "small length scales", 
      "flow transition", 
      "conversion devices", 
      "nanoelectromechanical systems", 
      "internal defects", 
      "individual nanowires", 
      "thermomechanical studies", 
      "applied stress", 
      "metallic glasses", 
      "processing methods", 
      "nanowires", 
      "elevated temperatures", 
      "bulk counterparts", 
      "volume generation", 
      "function of temperature", 
      "nanoscale", 
      "metallic nature", 
      "flow persist", 
      "temperature", 
      "glass objects", 
      "deformation", 
      "Newtonian", 
      "micro", 
      "glass", 
      "devices", 
      "behavior", 
      "efficient processing", 
      "systematic study", 
      "flow", 
      "strength", 
      "materials", 
      "operation", 
      "method", 
      "design", 
      "properties", 
      "bonding", 
      "flow response", 
      "hinges", 
      "processing", 
      "unique ability", 
      "stress", 
      "resistance", 
      "generation", 
      "Pt", 
      "transition", 
      "conditions", 
      "system", 
      "defects", 
      "scale", 
      "limit", 
      "results", 
      "budget", 
      "objects", 
      "promise", 
      "study", 
      "counterparts", 
      "guidance", 
      "interest", 
      "nature", 
      "robust understanding", 
      "ability", 
      "function", 
      "response", 
      "understanding", 
      "collection", 
      "lack", 
      "persist", 
      "evidence"
    ], 
    "name": "Thermomechanical Behavior of Molded Metallic Glass Nanowires", 
    "pagination": "19530", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016844706"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep19530"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26787400"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep19530", 
      "https://app.dimensions.ai/details/publication/pub.1016844706"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_709.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep19530"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep19530'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep19530'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep19530'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep19530'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      119 URIs      103 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep19530 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb5149e5b2352480f9143ca1bf42766bd
4 schema:citation sg:pub.10.1007/s11661-007-9410-4
5 sg:pub.10.1023/a:1015045324786
6 sg:pub.10.1038/187869b0
7 sg:pub.10.1038/nature07718
8 sg:pub.10.1038/ncomms9157
9 sg:pub.10.1038/nmat1984
10 sg:pub.10.1038/nmat2930
11 sg:pub.10.1038/srep01096
12 schema:datePublished 2016-01-20
13 schema:datePublishedReg 2016-01-20
14 schema:description Metallic glasses are disordered materials that offer the unique ability to perform thermoplastic forming operations at low thermal budget while preserving excellent mechanical properties such as high strength, large elastic strain limits and wear resistance owing to the metallic nature of bonding and lack of internal defects. Interest in molding micro- and nanoscale metallic glass objects is driven by the promise of robust and high performance micro- and nanoelectromechanical systems and miniature energy conversion devices. Yet accurate and efficient processing of these materials hinges on a robust understanding of their thermomechanical behavior. Here, we combine large-scale thermoplastic tensile deformation of collections of Pt-based amorphous nanowires with quantitative thermomechanical studies of individual nanowires in creep-like conditions to demonstrate that superplastic-like flow persists to small length scales. Systematic studies as a function of temperature, strain-rate and applied stress reveal the transition from Newtonian to non-Newtonian flow to be ubiquitous across the investigated length scales. However, we provide evidence that nanoscale specimens sustain greater free volume generation at elevated temperatures resulting in a flow transition at higher strain-rates than their bulk counterparts. Our results provide guidance for the design of thermoplastic processing methods and methods for verifying the flow response at the nanoscale.
15 schema:genre article
16 schema:isAccessibleForFree true
17 schema:isPartOf Nbb85a3d31f0f4acf8b2cafe3753cc571
18 Nfdca7243e9fb44f5845c3cf083f56812
19 sg:journal.1045337
20 schema:keywords Newtonian
21 Pt
22 ability
23 amorphous nanowires
24 applied stress
25 behavior
26 bonding
27 budget
28 bulk counterparts
29 collection
30 conditions
31 conversion devices
32 counterparts
33 defects
34 deformation
35 design
36 devices
37 efficient processing
38 elastic strain limit
39 elevated temperatures
40 energy conversion devices
41 evidence
42 excellent mechanical properties
43 flow
44 flow persist
45 flow response
46 flow transition
47 free volume generation
48 function
49 function of temperature
50 generation
51 glass
52 glass objects
53 guidance
54 high performance micro
55 high strength
56 hinges
57 individual nanowires
58 interest
59 internal defects
60 lack
61 large elastic strain limit
62 length scales
63 limit
64 low thermal budget
65 materials
66 mechanical properties
67 metallic glass nanowires
68 metallic glasses
69 metallic nature
70 method
71 micro
72 nanoelectromechanical systems
73 nanoscale
74 nanowires
75 nature
76 non-Newtonian flow
77 objects
78 operation
79 persist
80 processing
81 processing methods
82 promise
83 properties
84 resistance
85 response
86 results
87 robust understanding
88 scale
89 small length scales
90 strain limit
91 strength
92 stress
93 study
94 system
95 systematic study
96 temperature
97 tensile deformation
98 thermal budget
99 thermomechanical behavior
100 thermomechanical studies
101 thermoplastic processing methods
102 transition
103 understanding
104 unique ability
105 volume generation
106 schema:name Thermomechanical Behavior of Molded Metallic Glass Nanowires
107 schema:pagination 19530
108 schema:productId N13ab23a1e7c3497f84b4d6fdc05c3b20
109 Na7d11cd790cc475aa16316a6882bd69e
110 Nd0bb7332683d4053b0a37495f9497c5b
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016844706
112 https://doi.org/10.1038/srep19530
113 schema:sdDatePublished 2022-10-01T06:42
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N9f07b9adf2a34a828c3af7b57fa98a47
116 schema:url https://doi.org/10.1038/srep19530
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N0b31b37a56684e019c91d73dd70402c9 rdf:first sg:person.01030354247.87
121 rdf:rest rdf:nil
122 N13ab23a1e7c3497f84b4d6fdc05c3b20 schema:name doi
123 schema:value 10.1038/srep19530
124 rdf:type schema:PropertyValue
125 N390e09070e504b0ea318015db2f731e0 rdf:first sg:person.01145527322.19
126 rdf:rest N0b31b37a56684e019c91d73dd70402c9
127 N9f07b9adf2a34a828c3af7b57fa98a47 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Na7d11cd790cc475aa16316a6882bd69e schema:name dimensions_id
130 schema:value pub.1016844706
131 rdf:type schema:PropertyValue
132 Nb214f803830b4e3ab68e98fc1938a597 rdf:first sg:person.0727424661.29
133 rdf:rest Nda56d5313fda44b6a81e2883ffeb8bd5
134 Nb5149e5b2352480f9143ca1bf42766bd rdf:first sg:person.0677063700.51
135 rdf:rest Nb214f803830b4e3ab68e98fc1938a597
136 Nbb85a3d31f0f4acf8b2cafe3753cc571 schema:volumeNumber 6
137 rdf:type schema:PublicationVolume
138 Nd0bb7332683d4053b0a37495f9497c5b schema:name pubmed_id
139 schema:value 26787400
140 rdf:type schema:PropertyValue
141 Nda56d5313fda44b6a81e2883ffeb8bd5 rdf:first sg:person.01273672222.19
142 rdf:rest N390e09070e504b0ea318015db2f731e0
143 Nfdca7243e9fb44f5845c3cf083f56812 schema:issueNumber 1
144 rdf:type schema:PublicationIssue
145 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
146 schema:name Engineering
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
149 schema:name Materials Engineering
150 rdf:type schema:DefinedTerm
151 sg:grant.3000925 http://pending.schema.org/fundedItem sg:pub.10.1038/srep19530
152 rdf:type schema:MonetaryGrant
153 sg:grant.3127424 http://pending.schema.org/fundedItem sg:pub.10.1038/srep19530
154 rdf:type schema:MonetaryGrant
155 sg:grant.3487019 http://pending.schema.org/fundedItem sg:pub.10.1038/srep19530
156 rdf:type schema:MonetaryGrant
157 sg:journal.1045337 schema:issn 2045-2322
158 schema:name Scientific Reports
159 schema:publisher Springer Nature
160 rdf:type schema:Periodical
161 sg:person.01030354247.87 schema:affiliation grid-institutes:grid.133342.4
162 schema:familyName Gianola
163 schema:givenName Daniel S.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030354247.87
165 rdf:type schema:Person
166 sg:person.01145527322.19 schema:affiliation grid-institutes:grid.47100.32
167 schema:familyName Schroers
168 schema:givenName Jan
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19
170 rdf:type schema:Person
171 sg:person.01273672222.19 schema:affiliation grid-institutes:grid.264784.b
172 schema:familyName Kumar
173 schema:givenName Golden
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273672222.19
175 rdf:type schema:Person
176 sg:person.0677063700.51 schema:affiliation grid-institutes:grid.25879.31
177 schema:familyName Magagnosc
178 schema:givenName Daniel J.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677063700.51
180 rdf:type schema:Person
181 sg:person.0727424661.29 schema:affiliation grid-institutes:grid.47100.32
182 schema:familyName Chen
183 schema:givenName Wen
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727424661.29
185 rdf:type schema:Person
186 sg:pub.10.1007/s11661-007-9410-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025438478
187 https://doi.org/10.1007/s11661-007-9410-4
188 rdf:type schema:CreativeWork
189 sg:pub.10.1023/a:1015045324786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028078254
190 https://doi.org/10.1023/a:1015045324786
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/187869b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018841532
193 https://doi.org/10.1038/187869b0
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nature07718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018290838
196 https://doi.org/10.1038/nature07718
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/ncomms9157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020300303
199 https://doi.org/10.1038/ncomms9157
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nmat1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030636840
202 https://doi.org/10.1038/nmat1984
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nmat2930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042156004
205 https://doi.org/10.1038/nmat2930
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/srep01096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053179545
208 https://doi.org/10.1038/srep01096
209 rdf:type schema:CreativeWork
210 grid-institutes:grid.133342.4 schema:alternateName Department of Materials, University of California, 93106, Santa Barbara, California, USA
211 schema:name Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA
212 Department of Materials, University of California, 93106, Santa Barbara, California, USA
213 rdf:type schema:Organization
214 grid-institutes:grid.25879.31 schema:alternateName Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA
215 schema:name Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA
216 rdf:type schema:Organization
217 grid-institutes:grid.264784.b schema:alternateName Department of Mechanical Engineering, Texas Tech University, 79409, Lubbock, Texas, USA
218 schema:name Department of Mechanical Engineering, Texas Tech University, 79409, Lubbock, Texas, USA
219 rdf:type schema:Organization
220 grid-institutes:grid.47100.32 schema:alternateName Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA
221 schema:name Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...