Quantum coherence of steered states View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05

AUTHORS

Xueyuan Hu, Antony Milne, Boyang Zhang, Heng Fan

ABSTRACT

Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource in quantum information theory. Quantum steering, a fundamental notion originally considered by Schödinger, has also recently received much attention. When Alice and Bob share a correlated quantum system, Alice can perform a local measurement to 'steer' Bob's reduced state. We introduce the maximal steered coherence as a measure describing the extent to which steering can remotely create coherence; more precisely, we find the maximal coherence of Bob's steered state in the eigenbasis of his original reduced state, where maximization is performed over all positive-operator valued measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant under local unitary operations, maximal steered coherence may be increased when Bob performs a channel. For a two-qubit state we find that Bob's channel can increase maximal steered coherence if and only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. Our results show that the power of steering for coherence generation, though related to discord, is distinct from existing measures of quantum correlation. More... »

PAGES

19365

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep19365

DOI

http://dx.doi.org/10.1038/srep19365

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019336033

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26781214


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Jinan, 250100, P. R. China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Xueyuan", 
        "id": "sg:person.015074342245.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074342245.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Controlled Quantum Dynamics Theory, Department of Physics, Imperial College London, London SW7 2AZ, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milne", 
        "givenName": "Antony", 
        "id": "sg:person.012727426013.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012727426013.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Jinan, 250100, P. R. China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Boyang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Heng", 
        "id": "sg:person.0632134720.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632134720.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2012.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000860071", 
          "https://doi.org/10.1038/nphoton.2012.202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.042120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001685551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.042120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001685551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.250404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003755374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.250404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003755374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/44/41/415304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005430280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.2245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008906037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.2245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008906037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009213371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009213371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.024302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009552256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.024302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009552256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.042330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010207303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.042330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010207303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.052115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013535815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.052115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013535815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.210403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014265829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.210403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014265829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/15/3/033001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016600689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017736985", 
          "https://doi.org/10.1038/ncomms8689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.062110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025025722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.062110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025025722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026186245", 
          "https://doi.org/10.1038/nphys2515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep13359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026965797", 
          "https://doi.org/10.1038/srep13359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027545945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027545945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.170502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027919232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.170502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027919232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.022301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029082450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.022301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029082450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.85.032102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032210314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.85.032102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032210314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.012311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036227561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.012311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036227561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep02514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036723183", 
          "https://doi.org/10.1038/srep02514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038630311", 
          "https://doi.org/10.1038/ncomms4821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039932841", 
          "https://doi.org/10.1038/srep00885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.210401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040911040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.210401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040911040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.87.032340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042693472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.87.032340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042693472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042972474", 
          "https://doi.org/10.1038/nphys2474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.140402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043561230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.140402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043561230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.012320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043995573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.012320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043995573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/8/083017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044361293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048160953", 
          "https://doi.org/10.1038/nphys1766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.532887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048434511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.150402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050543565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.150402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050543565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/302/1/012037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050812964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.180404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051001902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.180404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051001902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.170401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053415740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.170401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053415740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100013554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053995998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/18/2/023045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059137299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.4277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.4277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.904522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101544"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05", 
    "datePublishedReg": "2016-05-01", 
    "description": "Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource in quantum information theory. Quantum steering, a fundamental notion originally considered by Sch\u00f6dinger, has also recently received much attention. When Alice and Bob share a correlated quantum system, Alice can perform a local measurement to 'steer' Bob's reduced state. We introduce the maximal steered coherence as a measure describing the extent to which steering can remotely create coherence; more precisely, we find the maximal coherence of Bob's steered state in the eigenbasis of his original reduced state, where maximization is performed over all positive-operator valued measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant under local unitary operations, maximal steered coherence may be increased when Bob performs a channel. For a two-qubit state we find that Bob's channel can increase maximal steered coherence if and only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. Our results show that the power of steering for coherence generation, though related to discord, is distinct from existing measures of quantum correlation. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep19365", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Quantum coherence of steered states", 
    "pagination": "19365", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5c20f8404f3802a00efe24029b3711511df9eeaa893470384852e76772d94d53"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26781214"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep19365"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019336033"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep19365", 
      "https://app.dimensions.ai/details/publication/pub.1019336033"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2016/160119/srep19365/full/srep19365.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep19365'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep19365'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep19365'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep19365'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      69 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep19365 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N101efbd1777b440b8e09b8c056365c7b
4 schema:citation sg:pub.10.1038/ncomms4821
5 sg:pub.10.1038/ncomms8689
6 sg:pub.10.1038/nphoton.2012.202
7 sg:pub.10.1038/nphys1766
8 sg:pub.10.1038/nphys2474
9 sg:pub.10.1038/nphys2515
10 sg:pub.10.1038/srep00885
11 sg:pub.10.1038/srep02514
12 sg:pub.10.1038/srep13359
13 https://doi.org/10.1017/s0305004100013554
14 https://doi.org/10.1063/1.532887
15 https://doi.org/10.1088/1367-2630/15/3/033001
16 https://doi.org/10.1088/1367-2630/16/8/083017
17 https://doi.org/10.1088/1367-2630/18/2/023045
18 https://doi.org/10.1088/1742-6596/302/1/012037
19 https://doi.org/10.1088/1751-8113/44/41/415304
20 https://doi.org/10.1103/physreva.40.4277
21 https://doi.org/10.1103/physreva.67.012320
22 https://doi.org/10.1103/physreva.85.032102
23 https://doi.org/10.1103/physreva.87.032340
24 https://doi.org/10.1103/physreva.90.024302
25 https://doi.org/10.1103/physreva.90.062110
26 https://doi.org/10.1103/physreva.91.022301
27 https://doi.org/10.1103/physreva.91.042120
28 https://doi.org/10.1103/physreva.91.042330
29 https://doi.org/10.1103/physreva.91.052115
30 https://doi.org/10.1103/physreva.92.012311
31 https://doi.org/10.1103/physrevlett.107.170502
32 https://doi.org/10.1103/physrevlett.111.250404
33 https://doi.org/10.1103/physrevlett.112.180404
34 https://doi.org/10.1103/physrevlett.113.020402
35 https://doi.org/10.1103/physrevlett.113.140401
36 https://doi.org/10.1103/physrevlett.113.150402
37 https://doi.org/10.1103/physrevlett.113.170401
38 https://doi.org/10.1103/physrevlett.114.210401
39 https://doi.org/10.1103/physrevlett.115.210403
40 https://doi.org/10.1103/physrevlett.80.2245
41 https://doi.org/10.1103/physrevlett.98.140402
42 https://doi.org/10.1103/revmodphys.79.555
43 https://doi.org/10.1109/18.904522
44 schema:datePublished 2016-05
45 schema:datePublishedReg 2016-05-01
46 schema:description Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource in quantum information theory. Quantum steering, a fundamental notion originally considered by Schödinger, has also recently received much attention. When Alice and Bob share a correlated quantum system, Alice can perform a local measurement to 'steer' Bob's reduced state. We introduce the maximal steered coherence as a measure describing the extent to which steering can remotely create coherence; more precisely, we find the maximal coherence of Bob's steered state in the eigenbasis of his original reduced state, where maximization is performed over all positive-operator valued measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant under local unitary operations, maximal steered coherence may be increased when Bob performs a channel. For a two-qubit state we find that Bob's channel can increase maximal steered coherence if and only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. Our results show that the power of steering for coherence generation, though related to discord, is distinct from existing measures of quantum correlation.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N1decd8c993f747e9a2c94e186081834e
51 N729e275d520d490e9784f48465115562
52 sg:journal.1045337
53 schema:name Quantum coherence of steered states
54 schema:pagination 19365
55 schema:productId N2aa3160cd93b42ca99376fd8b3657a75
56 N78ce7f7ff9c146368fb024be196542d5
57 N8be85e25092d4f61bdb965829ebfcb02
58 N8f0b59e5633242a9914758d160ca7220
59 Nbd59285148d4484da9c1470801d63aa1
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019336033
61 https://doi.org/10.1038/srep19365
62 schema:sdDatePublished 2019-04-10T18:26
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N9cdf6601c3d3459482388697eb667fad
65 schema:url http://www.nature.com/srep/2016/160119/srep19365/full/srep19365.html
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N101efbd1777b440b8e09b8c056365c7b rdf:first sg:person.015074342245.11
70 rdf:rest N99a4564027074213b99d7cae7a207498
71 N1decd8c993f747e9a2c94e186081834e schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N2aa3160cd93b42ca99376fd8b3657a75 schema:name pubmed_id
74 schema:value 26781214
75 rdf:type schema:PropertyValue
76 N729e275d520d490e9784f48465115562 schema:volumeNumber 6
77 rdf:type schema:PublicationVolume
78 N73d48eb071ce4c4ebc1d4ec36a04b28f rdf:first Nd781cf0bebb841adaa47810eb567ee0d
79 rdf:rest N910e986cb9be40c1807cd09343d41715
80 N78ce7f7ff9c146368fb024be196542d5 schema:name dimensions_id
81 schema:value pub.1019336033
82 rdf:type schema:PropertyValue
83 N8be85e25092d4f61bdb965829ebfcb02 schema:name nlm_unique_id
84 schema:value 101563288
85 rdf:type schema:PropertyValue
86 N8f0b59e5633242a9914758d160ca7220 schema:name readcube_id
87 schema:value 5c20f8404f3802a00efe24029b3711511df9eeaa893470384852e76772d94d53
88 rdf:type schema:PropertyValue
89 N910e986cb9be40c1807cd09343d41715 rdf:first sg:person.0632134720.87
90 rdf:rest rdf:nil
91 N99a4564027074213b99d7cae7a207498 rdf:first sg:person.012727426013.89
92 rdf:rest N73d48eb071ce4c4ebc1d4ec36a04b28f
93 N9cdf6601c3d3459482388697eb667fad schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nbd59285148d4484da9c1470801d63aa1 schema:name doi
96 schema:value 10.1038/srep19365
97 rdf:type schema:PropertyValue
98 Nd781cf0bebb841adaa47810eb567ee0d schema:affiliation https://www.grid.ac/institutes/grid.27255.37
99 schema:familyName Zhang
100 schema:givenName Boyang
101 rdf:type schema:Person
102 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
103 schema:name Physical Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
106 schema:name Quantum Physics
107 rdf:type schema:DefinedTerm
108 sg:journal.1045337 schema:issn 2045-2322
109 schema:name Scientific Reports
110 rdf:type schema:Periodical
111 sg:person.012727426013.89 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
112 schema:familyName Milne
113 schema:givenName Antony
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012727426013.89
115 rdf:type schema:Person
116 sg:person.015074342245.11 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
117 schema:familyName Hu
118 schema:givenName Xueyuan
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074342245.11
120 rdf:type schema:Person
121 sg:person.0632134720.87 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
122 schema:familyName Fan
123 schema:givenName Heng
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632134720.87
125 rdf:type schema:Person
126 sg:pub.10.1038/ncomms4821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038630311
127 https://doi.org/10.1038/ncomms4821
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/ncomms8689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017736985
130 https://doi.org/10.1038/ncomms8689
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nphoton.2012.202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000860071
133 https://doi.org/10.1038/nphoton.2012.202
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nphys1766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048160953
136 https://doi.org/10.1038/nphys1766
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nphys2474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042972474
139 https://doi.org/10.1038/nphys2474
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nphys2515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026186245
142 https://doi.org/10.1038/nphys2515
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/srep00885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039932841
145 https://doi.org/10.1038/srep00885
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/srep02514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036723183
148 https://doi.org/10.1038/srep02514
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/srep13359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026965797
151 https://doi.org/10.1038/srep13359
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1017/s0305004100013554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053995998
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.532887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048434511
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/1367-2630/15/3/033001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016600689
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1088/1367-2630/16/8/083017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044361293
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1088/1367-2630/18/2/023045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059137299
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1088/1742-6596/302/1/012037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050812964
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1088/1751-8113/44/41/415304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005430280
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physreva.40.4277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060480301
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physreva.67.012320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043995573
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreva.85.032102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032210314
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physreva.87.032340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042693472
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreva.90.024302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009552256
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physreva.90.062110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025025722
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physreva.91.022301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029082450
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physreva.91.042120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001685551
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physreva.91.042330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010207303
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physreva.91.052115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013535815
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physreva.92.012311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036227561
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.107.170502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027919232
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.111.250404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003755374
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.112.180404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051001902
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.113.020402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009213371
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.113.140401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020464847
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.113.150402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050543565
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.113.170401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053415740
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.114.210401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040911040
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.115.210403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014265829
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.80.2245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008906037
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.98.140402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043561230
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/revmodphys.79.555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027545945
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/18.904522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101544
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.27255.37 schema:alternateName Shandong University
216 schema:name School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Jinan, 250100, P. R. China.
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.458438.6 schema:alternateName Institute of Physics
219 schema:name Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
222 schema:name Controlled Quantum Dynamics Theory, Department of Physics, Imperial College London, London SW7 2AZ, UK.
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...