Co-Expression Network Models Suggest that Stress Increases Tolerance to Mutations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Sonja Lehtinen, Jürg Bähler, Christine Orengo

ABSTRACT

Network models are a well established tool for studying the robustness of complex systems, including modelling the effect of loss of function mutations in protein interaction networks. Past work has concentrated on average damage caused by random node removal, with little attention to the shape of the damage distribution. In this work, we use fission yeast co-expression networks before and after exposure to stress to model the effect of stress on mutational robustness. We find that exposure to stress decreases the average damage from node removal, suggesting stress induces greater tolerance to loss of function mutations. The shape of the damage distribution is also changed upon stress, with a greater incidence of extreme damage after exposure to stress. We demonstrate that the change in shape of the damage distribution can have considerable functional consequences, highlighting the need to consider the damage distribution in addition to average behaviour. More... »

PAGES

16726

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep16726

DOI

http://dx.doi.org/10.1038/srep16726

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042829896

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26568486


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Maps", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Schizosaccharomyces", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Physiological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Department of Infectious Disease Epidemiology, Imperial College, St Mary's Campus, Norfolk Place, London W2 1PG, UK.", 
            "University College London, ISMB, London, WC1E 6BT, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lehtinen", 
        "givenName": "Sonja", 
        "id": "sg:person.0655003177.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655003177.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "University College London, GEE, London, WC1E 6BT, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e4hler", 
        "givenName": "J\u00fcrg", 
        "id": "sg:person.01351425155.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351425155.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "University College London, ISMB, London, WC1E 6BT, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orengo", 
        "givenName": "Christine", 
        "id": "sg:person.01136244107.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136244107.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000282463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000282463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.140863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001594454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.140863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001594454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001810422", 
          "https://doi.org/10.1186/1471-2105-8-297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0028322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002943339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2011.2293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002949370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007743479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35019019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269744", 
          "https://doi.org/10.1038/35019019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35019019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269744", 
          "https://doi.org/10.1038/35019019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.056109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008383012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.056109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008383012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10409230701648502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009209552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11693-013-9123-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015674420", 
          "https://doi.org/10.1007/s11693-013-9123-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017837373", 
          "https://doi.org/10.1038/nature750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017837373", 
          "https://doi.org/10.1038/nature750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comnet/cnt004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020220875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0009035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021358434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022799441", 
          "https://doi.org/10.1038/nrg2398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0016605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025619896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.084533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025873295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.084533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025873295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11274-010-0584-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026484742", 
          "https://doi.org/10.1007/s11274-010-0584-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.e07-07-0680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028747818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.132275199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028848278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029668835", 
          "https://doi.org/10.1038/nrg1471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029668835", 
          "https://doi.org/10.1038/nrg1471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-4924-2-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032247948", 
          "https://doi.org/10.1186/1475-4924-2-14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033355699", 
          "https://doi.org/10.1186/1471-2164-7-40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3mb25548d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036848090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1213491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038532304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1213491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038532304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1213491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038532304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.015101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038927848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.015101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038927848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038990326", 
          "https://doi.org/10.1038/35075138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038990326", 
          "https://doi.org/10.1038/35075138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2013.0771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039098310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044656370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050041229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450342480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450342480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877811"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "Network models are a well established tool for studying the robustness of complex systems, including modelling the effect of loss of function mutations in protein interaction networks. Past work has concentrated on average damage caused by random node removal, with little attention to the shape of the damage distribution. In this work, we use fission yeast co-expression networks before and after exposure to stress to model the effect of stress on mutational robustness. We find that exposure to stress decreases the average damage from node removal, suggesting stress induces greater tolerance to loss of function mutations. The shape of the damage distribution is also changed upon stress, with a greater incidence of extreme damage after exposure to stress. We demonstrate that the change in shape of the damage distribution can have considerable functional consequences, highlighting the need to consider the damage distribution in addition to average behaviour. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep16726", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3636689", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Co-Expression Network Models Suggest that Stress Increases Tolerance to Mutations", 
    "pagination": "16726", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cc0450cafb398abdba3c1b84ec4c26c0e0f1fee5bd35f96cc4fe7e5d1165aa15"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26568486"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep16726"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042829896"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep16726", 
      "https://app.dimensions.ai/details/publication/pub.1042829896"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/151116/srep16726/full/srep16726.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep16726'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep16726'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep16726'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep16726'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      66 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep16726 schema:about N1298ce66d441442ba9dad225f3bed7fe
2 N56000acde2a84aeca020b2732ed66fa8
3 N947c722a11ba486fbcadf41ea94fb4e9
4 N96ac899d99ea44f1a6ec9130cde6b466
5 Nf8d52fe9ac9b4ef5b413bbc4bf044a76
6 anzsrc-for:06
7 anzsrc-for:0601
8 schema:author N09275b8cf93c49038a78a045014d0648
9 schema:citation sg:pub.10.1007/s11274-010-0584-3
10 sg:pub.10.1007/s11693-013-9123-5
11 sg:pub.10.1038/35019019
12 sg:pub.10.1038/35075138
13 sg:pub.10.1038/nature750
14 sg:pub.10.1038/nrg1471
15 sg:pub.10.1038/nrg2398
16 sg:pub.10.1186/1471-2105-8-297
17 sg:pub.10.1186/1471-2164-7-40
18 sg:pub.10.1186/1475-4924-2-14
19 https://doi.org/10.1039/c3mb25548d
20 https://doi.org/10.1073/pnas.132275199
21 https://doi.org/10.1073/pnas.95.25.14863
22 https://doi.org/10.1080/10409230701648502
23 https://doi.org/10.1091/mbc.e07-07-0680
24 https://doi.org/10.1093/comnet/cnt004
25 https://doi.org/10.1093/nar/gkr853
26 https://doi.org/10.1093/nar/gku1040
27 https://doi.org/10.1098/rsif.2013.0771
28 https://doi.org/10.1098/rspb.2011.2293
29 https://doi.org/10.1103/physreve.65.056109
30 https://doi.org/10.1103/physreve.67.015101
31 https://doi.org/10.1103/physrevlett.85.5468
32 https://doi.org/10.1126/science.1158684
33 https://doi.org/10.1126/science.1213491
34 https://doi.org/10.1126/science.286.5439.509
35 https://doi.org/10.1137/s003614450342480
36 https://doi.org/10.1371/journal.pone.0009035
37 https://doi.org/10.1371/journal.pone.0016605
38 https://doi.org/10.1371/journal.pone.0028322
39 https://doi.org/10.1534/genetics.107.084533
40 https://doi.org/10.1534/genetics.112.140863
41 schema:datePublished 2015-12
42 schema:datePublishedReg 2015-12-01
43 schema:description Network models are a well established tool for studying the robustness of complex systems, including modelling the effect of loss of function mutations in protein interaction networks. Past work has concentrated on average damage caused by random node removal, with little attention to the shape of the damage distribution. In this work, we use fission yeast co-expression networks before and after exposure to stress to model the effect of stress on mutational robustness. We find that exposure to stress decreases the average damage from node removal, suggesting stress induces greater tolerance to loss of function mutations. The shape of the damage distribution is also changed upon stress, with a greater incidence of extreme damage after exposure to stress. We demonstrate that the change in shape of the damage distribution can have considerable functional consequences, highlighting the need to consider the damage distribution in addition to average behaviour.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N2644bd9a9a7a46e1ad4b0634c0ae7a99
48 N5bb98836c3374a79927d47639e07b3fd
49 sg:journal.1045337
50 schema:name Co-Expression Network Models Suggest that Stress Increases Tolerance to Mutations
51 schema:pagination 16726
52 schema:productId N89d843cd746040b199b4e56d0dbb72fb
53 Na18393b0f8714080981c0da3f974d51a
54 Na7a49d5e6e6046d8b92496c21f16105c
55 Nac8284e60e744d9388facc932ed675f5
56 Nd8928a26238444ddb43c4329a06dc07d
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042829896
58 https://doi.org/10.1038/srep16726
59 schema:sdDatePublished 2019-04-10T18:57
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N0419c1f4539d4a9f9b889b7a0c517541
62 schema:url http://www.nature.com/srep/2015/151116/srep16726/full/srep16726.html
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0419c1f4539d4a9f9b889b7a0c517541 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N09275b8cf93c49038a78a045014d0648 rdf:first sg:person.0655003177.16
69 rdf:rest N653fdd98616b40e1a4169d90f11d783e
70 N1298ce66d441442ba9dad225f3bed7fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Models, Theoretical
72 rdf:type schema:DefinedTerm
73 N2644bd9a9a7a46e1ad4b0634c0ae7a99 schema:volumeNumber 5
74 rdf:type schema:PublicationVolume
75 N56000acde2a84aeca020b2732ed66fa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Stress, Physiological
77 rdf:type schema:DefinedTerm
78 N5bb98836c3374a79927d47639e07b3fd schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 N653fdd98616b40e1a4169d90f11d783e rdf:first sg:person.01351425155.03
81 rdf:rest N81a483bd569e4e3d8a89599f9f3e4580
82 N81a483bd569e4e3d8a89599f9f3e4580 rdf:first sg:person.01136244107.52
83 rdf:rest rdf:nil
84 N89d843cd746040b199b4e56d0dbb72fb schema:name nlm_unique_id
85 schema:value 101563288
86 rdf:type schema:PropertyValue
87 N947c722a11ba486fbcadf41ea94fb4e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Schizosaccharomyces
89 rdf:type schema:DefinedTerm
90 N96ac899d99ea44f1a6ec9130cde6b466 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Protein Interaction Maps
92 rdf:type schema:DefinedTerm
93 Na18393b0f8714080981c0da3f974d51a schema:name dimensions_id
94 schema:value pub.1042829896
95 rdf:type schema:PropertyValue
96 Na7a49d5e6e6046d8b92496c21f16105c schema:name doi
97 schema:value 10.1038/srep16726
98 rdf:type schema:PropertyValue
99 Nac8284e60e744d9388facc932ed675f5 schema:name readcube_id
100 schema:value cc0450cafb398abdba3c1b84ec4c26c0e0f1fee5bd35f96cc4fe7e5d1165aa15
101 rdf:type schema:PropertyValue
102 Nd8928a26238444ddb43c4329a06dc07d schema:name pubmed_id
103 schema:value 26568486
104 rdf:type schema:PropertyValue
105 Nf8d52fe9ac9b4ef5b413bbc4bf044a76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Mutation
107 rdf:type schema:DefinedTerm
108 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
109 schema:name Biological Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biochemistry and Cell Biology
113 rdf:type schema:DefinedTerm
114 sg:grant.3636689 http://pending.schema.org/fundedItem sg:pub.10.1038/srep16726
115 rdf:type schema:MonetaryGrant
116 sg:journal.1045337 schema:issn 2045-2322
117 schema:name Scientific Reports
118 rdf:type schema:Periodical
119 sg:person.01136244107.52 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
120 schema:familyName Orengo
121 schema:givenName Christine
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136244107.52
123 rdf:type schema:Person
124 sg:person.01351425155.03 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
125 schema:familyName Bähler
126 schema:givenName Jürg
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351425155.03
128 rdf:type schema:Person
129 sg:person.0655003177.16 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
130 schema:familyName Lehtinen
131 schema:givenName Sonja
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655003177.16
133 rdf:type schema:Person
134 sg:pub.10.1007/s11274-010-0584-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026484742
135 https://doi.org/10.1007/s11274-010-0584-3
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11693-013-9123-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015674420
138 https://doi.org/10.1007/s11693-013-9123-5
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/35019019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008269744
141 https://doi.org/10.1038/35019019
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/35075138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038990326
144 https://doi.org/10.1038/35075138
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017837373
147 https://doi.org/10.1038/nature750
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nrg1471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029668835
150 https://doi.org/10.1038/nrg1471
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nrg2398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022799441
153 https://doi.org/10.1038/nrg2398
154 rdf:type schema:CreativeWork
155 sg:pub.10.1186/1471-2105-8-297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001810422
156 https://doi.org/10.1186/1471-2105-8-297
157 rdf:type schema:CreativeWork
158 sg:pub.10.1186/1471-2164-7-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033355699
159 https://doi.org/10.1186/1471-2164-7-40
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1475-4924-2-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032247948
162 https://doi.org/10.1186/1475-4924-2-14
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1039/c3mb25548d schema:sameAs https://app.dimensions.ai/details/publication/pub.1036848090
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.132275199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028848278
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1080/10409230701648502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009209552
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1091/mbc.e07-07-0680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028747818
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/comnet/cnt004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020220875
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/nar/gkr853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044656370
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/nar/gku1040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050041229
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1098/rsif.2013.0771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039098310
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1098/rspb.2011.2293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002949370
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physreve.65.056109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008383012
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physreve.67.015101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038927848
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.85.5468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000282463
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.1158684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007743479
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.1213491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038532304
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1137/s003614450342480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877811
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1371/journal.pone.0009035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021358434
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pone.0016605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025619896
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1371/journal.pone.0028322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002943339
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1534/genetics.107.084533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025873295
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1534/genetics.112.140863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001594454
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
209 schema:name Department of Infectious Disease Epidemiology, Imperial College, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
210 University College London, GEE, London, WC1E 6BT, UK.
211 University College London, ISMB, London, WC1E 6BT, UK.
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...