Multiscale and multiresolution modeling of shales and their flow and morphological properties View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Pejman Tahmasebi, Farzam Javadpour, Muhammad Sahimi

ABSTRACT

The need for more accessible energy resources makes shale formations increasingly important. Characterization of such low-permeability formations is complicated, due to the presence of multiscale features, and defies conventional methods. High-quality 3D imaging may be an ultimate solution for revealing the complexities of such porous media, but acquiring them is costly and time consuming. High-quality 2D images, on the other hand, are widely available. A novel three-step, multiscale, multiresolution reconstruction method is presented that directly uses 2D images in order to develop 3D models of shales. It uses a high-resolution 2D image representing the small-scale features to reproduce the nanopores and their network, a large scale, low-resolution 2D image to create the larger-scale characteristics, and generates stochastic realizations of the porous formation. The method is used to develop a model for a shale system for which the full 3D image is available and its properties can be computed. The predictions of the reconstructed models are in excellent agreement with the data. The method is, however, quite general and can be used for reconstructing models of other important heterogeneous materials and media. Two biological examples and from materials science are also reconstructed to demonstrate the generality of the method. More... »

PAGES

16373

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep16373

DOI

http://dx.doi.org/10.1038/srep16373

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046046938

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26560178


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, 78713, Austin, TX, USA.", 
            "Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211 USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tahmasebi", 
        "givenName": "Pejman", 
        "id": "sg:person.012502053235.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502053235.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, 78713, Austin, TX, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Javadpour", 
        "givenName": "Farzam", 
        "id": "sg:person.07540642277.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07540642277.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211 USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahimi", 
        "givenName": "Muhammad", 
        "id": "sg:person.0656665166.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656665166.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0021-9797(84)90481-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016568585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-015-0471-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017034854", 
          "https://doi.org/10.1007/s11242-015-0471-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb091ib02p02183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018177920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018466027", 
          "https://doi.org/10.1038/srep08089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0927-7757(02)00049-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023946704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2015.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029139233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/int-2013-0003.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031438705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2013.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036418774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcis.2000.7055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036536128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006wr005680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043615930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:matg.0000011585.73414.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044802302", 
          "https://doi.org/10.1023/b:matg.0000011585.73414.35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9322(90)90025-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046201672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9322(90)90025-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046201672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-012-9287-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050574504", 
          "https://doi.org/10.1007/s10596-012-9287-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.3203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051518876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.3203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051518876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2012.424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053809436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2012.424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053809436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.5990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.5990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.032401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060747260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.032401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060747260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2003.813506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061649838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/03301110145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064920095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/08171111061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064922717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/07-10-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068944252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/09-08-16-da", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068945296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/161015-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068951590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/urtec2013-065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096354289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15530/urtec-2014-1921688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099092331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9783527636693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108143465"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "The need for more accessible energy resources makes shale formations increasingly important. Characterization of such low-permeability formations is complicated, due to the presence of multiscale features, and defies conventional methods. High-quality 3D imaging may be an ultimate solution for revealing the complexities of such porous media, but acquiring them is costly and time consuming. High-quality 2D images, on the other hand, are widely available. A novel three-step, multiscale, multiresolution reconstruction method is presented that directly uses 2D images in order to develop 3D models of shales. It uses a high-resolution 2D image representing the small-scale features to reproduce the nanopores and their network, a large scale, low-resolution 2D image to create the larger-scale characteristics, and generates stochastic realizations of the porous formation. The method is used to develop a model for a shale system for which the full 3D image is available and its properties can be computed. The predictions of the reconstructed models are in excellent agreement with the data. The method is, however, quite general and can be used for reconstructing models of other important heterogeneous materials and media. Two biological examples and from materials science are also reconstructed to demonstrate the generality of the method. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep16373", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Multiscale and multiresolution modeling of shales and their flow and morphological properties", 
    "pagination": "16373", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db577911e1e370de0a6d49688650c01d9612e159d75c7605a84bbefd58046235"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26560178"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep16373"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046046938"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep16373", 
      "https://app.dimensions.ai/details/publication/pub.1046046938"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000594.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/151112/srep16373/full/srep16373.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep16373'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep16373'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep16373'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep16373'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      59 URIs      23 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep16373 schema:about N09d24e0f9c0a41478f4f6cbb7a576fd2
2 N65f639dbc57440ef843a4595bf6a3ba5
3 anzsrc-for:08
4 anzsrc-for:0801
5 schema:author Nec2e331540ec491b9c3f28dcd1fa02ff
6 schema:citation sg:pub.10.1007/s10596-012-9287-1
7 sg:pub.10.1007/s11242-015-0471-3
8 sg:pub.10.1023/b:matg.0000011585.73414.35
9 sg:pub.10.1038/srep08089
10 https://doi.org/10.1002/0471200611
11 https://doi.org/10.1002/9783527636693
12 https://doi.org/10.1006/jcis.2000.7055
13 https://doi.org/10.1016/0021-9797(84)90481-8
14 https://doi.org/10.1016/0301-9322(90)90025-e
15 https://doi.org/10.1016/j.coal.2013.10.007
16 https://doi.org/10.1016/j.coal.2015.02.004
17 https://doi.org/10.1016/s0927-7757(02)00049-3
18 https://doi.org/10.1017/jfm.2012.424
19 https://doi.org/10.1029/2006wr005680
20 https://doi.org/10.1029/jb091ib02p02183
21 https://doi.org/10.1103/physreva.46.2004
22 https://doi.org/10.1103/physrevb.31.5990
23 https://doi.org/10.1103/physreve.56.3203
24 https://doi.org/10.1103/physreve.91.032401
25 https://doi.org/10.1109/tit.2003.813506
26 https://doi.org/10.1190/int-2013-0003.1
27 https://doi.org/10.1190/urtec2013-065
28 https://doi.org/10.1306/03301110145
29 https://doi.org/10.1306/08171111061
30 https://doi.org/10.15530/urtec-2014-1921688
31 https://doi.org/10.2118/07-10-06
32 https://doi.org/10.2118/09-08-16-da
33 https://doi.org/10.2118/161015-pa
34 schema:datePublished 2015-12
35 schema:datePublishedReg 2015-12-01
36 schema:description The need for more accessible energy resources makes shale formations increasingly important. Characterization of such low-permeability formations is complicated, due to the presence of multiscale features, and defies conventional methods. High-quality 3D imaging may be an ultimate solution for revealing the complexities of such porous media, but acquiring them is costly and time consuming. High-quality 2D images, on the other hand, are widely available. A novel three-step, multiscale, multiresolution reconstruction method is presented that directly uses 2D images in order to develop 3D models of shales. It uses a high-resolution 2D image representing the small-scale features to reproduce the nanopores and their network, a large scale, low-resolution 2D image to create the larger-scale characteristics, and generates stochastic realizations of the porous formation. The method is used to develop a model for a shale system for which the full 3D image is available and its properties can be computed. The predictions of the reconstructed models are in excellent agreement with the data. The method is, however, quite general and can be used for reconstructing models of other important heterogeneous materials and media. Two biological examples and from materials science are also reconstructed to demonstrate the generality of the method.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N3046ad2f59334ae9acd615282a44b532
41 Nc78703b78f704a84bad6c1b25ca33608
42 sg:journal.1045337
43 schema:name Multiscale and multiresolution modeling of shales and their flow and morphological properties
44 schema:pagination 16373
45 schema:productId N523c274fff5446988478cb392fd77b3a
46 N617d29b9b71a406998073e7231f9eea3
47 N81b4d7b2860649b4b7a80500d6a8f179
48 N87a48466274c47cdb9dc47092fc06947
49 Nd71aa06f48e444459eb3d1a8e823fbc7
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046046938
51 https://doi.org/10.1038/srep16373
52 schema:sdDatePublished 2019-04-10T16:03
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N60aeeb494f1949b0be86e9e5cd8dec62
55 schema:url http://www.nature.com/srep/2015/151112/srep16373/full/srep16373.html
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0893910de1184ce2bb50ea1878188b4e rdf:first sg:person.0656665166.83
60 rdf:rest rdf:nil
61 N09d24e0f9c0a41478f4f6cbb7a576fd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Algorithms
63 rdf:type schema:DefinedTerm
64 N3046ad2f59334ae9acd615282a44b532 schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N523c274fff5446988478cb392fd77b3a schema:name dimensions_id
67 schema:value pub.1046046938
68 rdf:type schema:PropertyValue
69 N5a94b373110149b8bbc22a2b6ad855bf rdf:first sg:person.07540642277.62
70 rdf:rest N0893910de1184ce2bb50ea1878188b4e
71 N60aeeb494f1949b0be86e9e5cd8dec62 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N617d29b9b71a406998073e7231f9eea3 schema:name pubmed_id
74 schema:value 26560178
75 rdf:type schema:PropertyValue
76 N65f639dbc57440ef843a4595bf6a3ba5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Models, Theoretical
78 rdf:type schema:DefinedTerm
79 N81b4d7b2860649b4b7a80500d6a8f179 schema:name nlm_unique_id
80 schema:value 101563288
81 rdf:type schema:PropertyValue
82 N87a48466274c47cdb9dc47092fc06947 schema:name readcube_id
83 schema:value db577911e1e370de0a6d49688650c01d9612e159d75c7605a84bbefd58046235
84 rdf:type schema:PropertyValue
85 Nc78703b78f704a84bad6c1b25ca33608 schema:volumeNumber 5
86 rdf:type schema:PublicationVolume
87 Nd71aa06f48e444459eb3d1a8e823fbc7 schema:name doi
88 schema:value 10.1038/srep16373
89 rdf:type schema:PropertyValue
90 Nec2e331540ec491b9c3f28dcd1fa02ff rdf:first sg:person.012502053235.09
91 rdf:rest N5a94b373110149b8bbc22a2b6ad855bf
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:journal.1045337 schema:issn 2045-2322
99 schema:name Scientific Reports
100 rdf:type schema:Periodical
101 sg:person.012502053235.09 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
102 schema:familyName Tahmasebi
103 schema:givenName Pejman
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502053235.09
105 rdf:type schema:Person
106 sg:person.0656665166.83 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
107 schema:familyName Sahimi
108 schema:givenName Muhammad
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656665166.83
110 rdf:type schema:Person
111 sg:person.07540642277.62 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
112 schema:familyName Javadpour
113 schema:givenName Farzam
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07540642277.62
115 rdf:type schema:Person
116 sg:pub.10.1007/s10596-012-9287-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050574504
117 https://doi.org/10.1007/s10596-012-9287-1
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11242-015-0471-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017034854
120 https://doi.org/10.1007/s11242-015-0471-3
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/b:matg.0000011585.73414.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044802302
123 https://doi.org/10.1023/b:matg.0000011585.73414.35
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/srep08089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018466027
126 https://doi.org/10.1038/srep08089
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/0471200611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661155
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/9783527636693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108143465
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1006/jcis.2000.7055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036536128
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0021-9797(84)90481-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016568585
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0301-9322(90)90025-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1046201672
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.coal.2013.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036418774
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.coal.2015.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029139233
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0927-7757(02)00049-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023946704
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1017/jfm.2012.424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053809436
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1029/2006wr005680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043615930
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1029/jb091ib02p02183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018177920
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreva.46.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485942
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevb.31.5990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537473
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physreve.56.3203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051518876
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreve.91.032401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060747260
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tit.2003.813506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649838
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1190/int-2013-0003.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031438705
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1190/urtec2013-065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096354289
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1306/03301110145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064920095
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1306/08171111061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064922717
167 rdf:type schema:CreativeWork
168 https://doi.org/10.15530/urtec-2014-1921688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099092331
169 rdf:type schema:CreativeWork
170 https://doi.org/10.2118/07-10-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068944252
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2118/09-08-16-da schema:sameAs https://app.dimensions.ai/details/publication/pub.1068945296
173 rdf:type schema:CreativeWork
174 https://doi.org/10.2118/161015-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068951590
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
177 schema:name Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, 78713, Austin, TX, USA.
178 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211 USA.
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
181 schema:name Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, 78713, Austin, TX, USA.
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...