Quantitative histology analysis of the ovarian tumour microenvironment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Chunyan Lan, Andreas Heindl, Xin Huang, Shaoyan Xi, Susana Banerjee, Jihong Liu, Yinyin Yuan

ABSTRACT

Concerted efforts in genomic studies examining RNA transcription and DNA methylation patterns have revealed profound insights in prognostic ovarian cancer subtypes. On the other hand, abundant histology slides have been generated to date, yet their uses remain very limited and largely qualitative. Our goal is to develop automated histology analysis as an alternative subtyping technology for ovarian cancer that is cost-efficient and does not rely on DNA quality. We developed an automated system for scoring primary tumour sections of 91 late-stage ovarian cancer to identify single cells. We demonstrated high accuracy of our system based on expert pathologists' scores (cancer = 97.1%, stromal = 89.1%) as well as compared to immunohistochemistry scoring (correlation = 0.87). The percentage of stromal cells in all cells is significantly associated with poor overall survival after controlling for clinical parameters including debulking status and age (multivariate analysis p = 0.0021, HR = 2.54, CI = 1.40-4.60) and progression-free survival (multivariate analysis p = 0.022, HR = 1.75, CI = 1.09-2.82). We demonstrate how automated image analysis enables objective quantification of microenvironmental composition of ovarian tumours. Our analysis reveals a strong effect of the tumour microenvironment on ovarian cancer progression and highlights the potential of therapeutic interventions that target the stromal compartment or cancer-stroma signalling in the stroma-high, late-stage ovarian cancer subset. More... »

PAGES

16317

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep16317

DOI

http://dx.doi.org/10.1038/srep16317

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023674215

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26573438


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease-Free Survival", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovarian Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stromal Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Microenvironment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.", 
            "State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lan", 
        "givenName": "Chunyan", 
        "id": "sg:person.01274353624.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274353624.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Cancer Research", 
          "id": "https://www.grid.ac/institutes/grid.18886.3f", 
          "name": [
            "Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.", 
            "Centre for Molecular Pathology, The Royal Marsden Hospital, London, UK.", 
            "Division of Molecular Pathology, The Institute of Cancer Research, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heindl", 
        "givenName": "Andreas", 
        "id": "sg:person.0645077332.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645077332.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.", 
            "State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Xin", 
        "id": "sg:person.01257400130.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257400130.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.488530.2", 
          "name": [
            "State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.", 
            "Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xi", 
        "givenName": "Shaoyan", 
        "id": "sg:person.011645506161.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011645506161.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Marsden NHS Foundation Trust", 
          "id": "https://www.grid.ac/institutes/grid.5072.0", 
          "name": [
            "Gynecology Unit, The Royal Marsden NHS Foundation Trust, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banerjee", 
        "givenName": "Susana", 
        "id": "sg:person.01326353035.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326353035.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.", 
            "State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jihong", 
        "id": "sg:person.0764451030.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764451030.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Cancer Research", 
          "id": "https://www.grid.ac/institutes/grid.18886.3f", 
          "name": [
            "Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.", 
            "Centre for Molecular Pathology, The Royal Marsden Hospital, London, UK.", 
            "Division of Molecular Pathology, The Institute of Cancer Research, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Yinyin", 
        "id": "sg:person.01214013553.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214013553.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature10166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000736346", 
          "https://doi.org/10.1038/nature10166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3004330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005234727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djs629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007220641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009530437", 
          "https://doi.org/10.1038/nrc3606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci65833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010389906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/92.9.699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017040448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa020177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017266513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/scbi.2001.0417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017604549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199503093321002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020416142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2012.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023188068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2353/ajpath.2010.100105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024928264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/onci.25962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025242329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-98094-2_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035467218", 
          "https://doi.org/10.1007/978-0-387-98094-2_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1104621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036355137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0036383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039976158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10555-013-9456-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040453486", 
          "https://doi.org/10.1007/s10555-013-9456-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042805607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-08-0196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049534215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051222405", 
          "https://doi.org/10.1038/nature12626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0526-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052041316", 
          "https://doi.org/10.1186/s13059-014-0526-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0526-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052041316", 
          "https://doi.org/10.1186/s13059-014-0526-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0526-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052041316", 
          "https://doi.org/10.1186/s13059-014-0526-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052892075", 
          "https://doi.org/10.1038/nrc3298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053038796", 
          "https://doi.org/10.1038/nature10762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006254-199507000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060258897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006254-199507000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060258897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006254-199507000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060258897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074873071", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "Concerted efforts in genomic studies examining RNA transcription and DNA methylation patterns have revealed profound insights in prognostic ovarian cancer subtypes. On the other hand, abundant histology slides have been generated to date, yet their uses remain very limited and largely qualitative. Our goal is to develop automated histology analysis as an alternative subtyping technology for ovarian cancer that is cost-efficient and does not rely on DNA quality. We developed an automated system for scoring primary tumour sections of 91 late-stage ovarian cancer to identify single cells. We demonstrated high accuracy of our system based on expert pathologists' scores (cancer\u2009=\u200997.1%, stromal\u2009=\u200989.1%) as well as compared to immunohistochemistry scoring (correlation\u2009=\u20090.87). The percentage of stromal cells in all cells is significantly associated with poor overall survival after controlling for clinical parameters including debulking status and age (multivariate analysis p\u2009=\u20090.0021, HR\u2009=\u20092.54, CI\u2009=\u20091.40-4.60) and progression-free survival (multivariate analysis p\u2009=\u20090.022, HR\u2009=\u20091.75, CI\u2009=\u20091.09-2.82). We demonstrate how automated image analysis enables objective quantification of microenvironmental composition of ovarian tumours. Our analysis reveals a strong effect of the tumour microenvironment on ovarian cancer progression and highlights the potential of therapeutic interventions that target the stromal compartment or cancer-stroma signalling in the stroma-high, late-stage ovarian cancer subset. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep16317", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4579368", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Quantitative histology analysis of the ovarian tumour microenvironment", 
    "pagination": "16317", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "70ca6f11c508113cd44786593fbc15beb3c38ec081258f89f7bb20c5d9d84e70"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26573438"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep16317"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023674215"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep16317", 
      "https://app.dimensions.ai/details/publication/pub.1023674215"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/151117/srep16317/full/srep16317.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep16317'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep16317'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep16317'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep16317'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      71 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep16317 schema:about N01e586b2c67a4f6d8b62ee66c9f742a0
2 N050665d617a7454ba4307334108fed10
3 N2a7d4ceed4074fec809537fdee5d562a
4 N45c64fcc92cf4fa9af344dc7b5513711
5 N46b0e8439a4544d79784b604256e7283
6 N550cde80b146485f853f05058b01feb0
7 N59d43ef58db34ebf9e6a8cb715d612bd
8 N6942ba4cc1cb471f8bc4be9e4339c22b
9 N73cefcd9087b473ead67f98ba88bcbae
10 N9046a4f18d5a4c889b730f934d978a26
11 N95fee0c1fecb4b00b0ed10e23676ddbc
12 N982aa6b8dbbe4b3fa3005cd8765e822f
13 Nb2c5934bac814618955eba7abafae354
14 Nbf6951a71a954829bfd12c5d924fc62f
15 Nc1c474aa5e094dc78786d1f87803f07e
16 Nc5729459b5174470869ce353b114c274
17 Ncc211be867054ae092be38ad2bd5d325
18 Nf6df119a1b834f7184643f5db8adb60b
19 anzsrc-for:11
20 anzsrc-for:1112
21 schema:author N53466322b0154ec6ab21d3da2f661d5c
22 schema:citation sg:pub.10.1007/978-0-387-98094-2_15
23 sg:pub.10.1007/s10555-013-9456-2
24 sg:pub.10.1038/nature10166
25 sg:pub.10.1038/nature10762
26 sg:pub.10.1038/nature12626
27 sg:pub.10.1038/nrc3298
28 sg:pub.10.1038/nrc3606
29 sg:pub.10.1186/s13059-014-0526-8
30 https://app.dimensions.ai/details/publication/pub.1074873071
31 https://doi.org/10.1006/scbi.2001.0417
32 https://doi.org/10.1016/j.ccr.2012.12.020
33 https://doi.org/10.1056/nejm199503093321002
34 https://doi.org/10.1056/nejmoa020177
35 https://doi.org/10.1056/nejmoa1104621
36 https://doi.org/10.1093/jnci/92.9.699
37 https://doi.org/10.1093/jnci/djs629
38 https://doi.org/10.1097/00006254-199507000-00012
39 https://doi.org/10.1109/tsmc.1979.4310076
40 https://doi.org/10.1126/scitranslmed.3004330
41 https://doi.org/10.1158/1078-0432.ccr-08-0196
42 https://doi.org/10.1172/jci65833
43 https://doi.org/10.1371/journal.pone.0036383
44 https://doi.org/10.2353/ajpath.2010.100105
45 https://doi.org/10.4161/onci.25962
46 schema:datePublished 2015-12
47 schema:datePublishedReg 2015-12-01
48 schema:description Concerted efforts in genomic studies examining RNA transcription and DNA methylation patterns have revealed profound insights in prognostic ovarian cancer subtypes. On the other hand, abundant histology slides have been generated to date, yet their uses remain very limited and largely qualitative. Our goal is to develop automated histology analysis as an alternative subtyping technology for ovarian cancer that is cost-efficient and does not rely on DNA quality. We developed an automated system for scoring primary tumour sections of 91 late-stage ovarian cancer to identify single cells. We demonstrated high accuracy of our system based on expert pathologists' scores (cancer = 97.1%, stromal = 89.1%) as well as compared to immunohistochemistry scoring (correlation = 0.87). The percentage of stromal cells in all cells is significantly associated with poor overall survival after controlling for clinical parameters including debulking status and age (multivariate analysis p = 0.0021, HR = 2.54, CI = 1.40-4.60) and progression-free survival (multivariate analysis p = 0.022, HR = 1.75, CI = 1.09-2.82). We demonstrate how automated image analysis enables objective quantification of microenvironmental composition of ovarian tumours. Our analysis reveals a strong effect of the tumour microenvironment on ovarian cancer progression and highlights the potential of therapeutic interventions that target the stromal compartment or cancer-stroma signalling in the stroma-high, late-stage ovarian cancer subset.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N60e2052f26514999a1945b31c46e84cc
53 N6380e789d5a340889fe3ee783354c9ef
54 sg:journal.1045337
55 schema:name Quantitative histology analysis of the ovarian tumour microenvironment
56 schema:pagination 16317
57 schema:productId N1300ce296c864e8794365cbe5bb3097a
58 N2f2405a0bf754431be661dfb051b3236
59 N91e394d1c1a74d1a9435025d1b929730
60 Na7b296fe86604be2978b322f28b362d3
61 Ncb7d6b5aedad4ab2a578373bed9c0f9c
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023674215
63 https://doi.org/10.1038/srep16317
64 schema:sdDatePublished 2019-04-10T22:19
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nb2b83fd3f10b4bb4b790b1470d98c662
67 schema:url http://www.nature.com/srep/2015/151117/srep16317/full/srep16317.html
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N01e586b2c67a4f6d8b62ee66c9f742a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Tumor Microenvironment
73 rdf:type schema:DefinedTerm
74 N050665d617a7454ba4307334108fed10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Immunohistochemistry
76 rdf:type schema:DefinedTerm
77 N0b65878ac9b34d558d9fec644d424be3 rdf:first sg:person.01326353035.21
78 rdf:rest Nd4d75300f1684a11881818f0f4982dc4
79 N1300ce296c864e8794365cbe5bb3097a schema:name doi
80 schema:value 10.1038/srep16317
81 rdf:type schema:PropertyValue
82 N2a7d4ceed4074fec809537fdee5d562a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Multivariate Analysis
84 rdf:type schema:DefinedTerm
85 N2f2405a0bf754431be661dfb051b3236 schema:name nlm_unique_id
86 schema:value 101563288
87 rdf:type schema:PropertyValue
88 N45c64fcc92cf4fa9af344dc7b5513711 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Survival Rate
90 rdf:type schema:DefinedTerm
91 N46b0e8439a4544d79784b604256e7283 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Adult
93 rdf:type schema:DefinedTerm
94 N4f77fdbd0ffd443284de8732ca3da8f8 rdf:first sg:person.01257400130.02
95 rdf:rest Ndbdd3076c2374844a0ac8b84f2af67c0
96 N53466322b0154ec6ab21d3da2f661d5c rdf:first sg:person.01274353624.72
97 rdf:rest N666830039ea4459ca01f1e431ada3a72
98 N550cde80b146485f853f05058b01feb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Disease-Free Survival
100 rdf:type schema:DefinedTerm
101 N59d43ef58db34ebf9e6a8cb715d612bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Automation
103 rdf:type schema:DefinedTerm
104 N60e2052f26514999a1945b31c46e84cc schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N61073f9360e34c5292a71d71dbf13992 rdf:first sg:person.01214013553.09
107 rdf:rest rdf:nil
108 N6380e789d5a340889fe3ee783354c9ef schema:volumeNumber 5
109 rdf:type schema:PublicationVolume
110 N666830039ea4459ca01f1e431ada3a72 rdf:first sg:person.0645077332.77
111 rdf:rest N4f77fdbd0ffd443284de8732ca3da8f8
112 N6942ba4cc1cb471f8bc4be9e4339c22b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Neoplasm Staging
114 rdf:type schema:DefinedTerm
115 N73cefcd9087b473ead67f98ba88bcbae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Aged, 80 and over
117 rdf:type schema:DefinedTerm
118 N9046a4f18d5a4c889b730f934d978a26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Stromal Cells
120 rdf:type schema:DefinedTerm
121 N91e394d1c1a74d1a9435025d1b929730 schema:name pubmed_id
122 schema:value 26573438
123 rdf:type schema:PropertyValue
124 N95fee0c1fecb4b00b0ed10e23676ddbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Female
126 rdf:type schema:DefinedTerm
127 N982aa6b8dbbe4b3fa3005cd8765e822f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Disease Progression
129 rdf:type schema:DefinedTerm
130 Na7b296fe86604be2978b322f28b362d3 schema:name dimensions_id
131 schema:value pub.1023674215
132 rdf:type schema:PropertyValue
133 Nb2b83fd3f10b4bb4b790b1470d98c662 schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 Nb2c5934bac814618955eba7abafae354 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Prognosis
137 rdf:type schema:DefinedTerm
138 Nbf6951a71a954829bfd12c5d924fc62f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Humans
140 rdf:type schema:DefinedTerm
141 Nc1c474aa5e094dc78786d1f87803f07e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Proportional Hazards Models
143 rdf:type schema:DefinedTerm
144 Nc5729459b5174470869ce353b114c274 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Aged
146 rdf:type schema:DefinedTerm
147 Ncb7d6b5aedad4ab2a578373bed9c0f9c schema:name readcube_id
148 schema:value 70ca6f11c508113cd44786593fbc15beb3c38ec081258f89f7bb20c5d9d84e70
149 rdf:type schema:PropertyValue
150 Ncc211be867054ae092be38ad2bd5d325 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Ovarian Neoplasms
152 rdf:type schema:DefinedTerm
153 Nd4d75300f1684a11881818f0f4982dc4 rdf:first sg:person.0764451030.86
154 rdf:rest N61073f9360e34c5292a71d71dbf13992
155 Ndbdd3076c2374844a0ac8b84f2af67c0 rdf:first sg:person.011645506161.13
156 rdf:rest N0b65878ac9b34d558d9fec644d424be3
157 Nf6df119a1b834f7184643f5db8adb60b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Middle Aged
159 rdf:type schema:DefinedTerm
160 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
161 schema:name Medical and Health Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
164 schema:name Oncology and Carcinogenesis
165 rdf:type schema:DefinedTerm
166 sg:grant.4579368 http://pending.schema.org/fundedItem sg:pub.10.1038/srep16317
167 rdf:type schema:MonetaryGrant
168 sg:journal.1045337 schema:issn 2045-2322
169 schema:name Scientific Reports
170 rdf:type schema:Periodical
171 sg:person.011645506161.13 schema:affiliation https://www.grid.ac/institutes/grid.488530.2
172 schema:familyName Xi
173 schema:givenName Shaoyan
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011645506161.13
175 rdf:type schema:Person
176 sg:person.01214013553.09 schema:affiliation https://www.grid.ac/institutes/grid.18886.3f
177 schema:familyName Yuan
178 schema:givenName Yinyin
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214013553.09
180 rdf:type schema:Person
181 sg:person.01257400130.02 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
182 schema:familyName Huang
183 schema:givenName Xin
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257400130.02
185 rdf:type schema:Person
186 sg:person.01274353624.72 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
187 schema:familyName Lan
188 schema:givenName Chunyan
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274353624.72
190 rdf:type schema:Person
191 sg:person.01326353035.21 schema:affiliation https://www.grid.ac/institutes/grid.5072.0
192 schema:familyName Banerjee
193 schema:givenName Susana
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326353035.21
195 rdf:type schema:Person
196 sg:person.0645077332.77 schema:affiliation https://www.grid.ac/institutes/grid.18886.3f
197 schema:familyName Heindl
198 schema:givenName Andreas
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645077332.77
200 rdf:type schema:Person
201 sg:person.0764451030.86 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
202 schema:familyName Liu
203 schema:givenName Jihong
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764451030.86
205 rdf:type schema:Person
206 sg:pub.10.1007/978-0-387-98094-2_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035467218
207 https://doi.org/10.1007/978-0-387-98094-2_15
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s10555-013-9456-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040453486
210 https://doi.org/10.1007/s10555-013-9456-2
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nature10166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000736346
213 https://doi.org/10.1038/nature10166
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nature10762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053038796
216 https://doi.org/10.1038/nature10762
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nature12626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051222405
219 https://doi.org/10.1038/nature12626
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nrc3298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052892075
222 https://doi.org/10.1038/nrc3298
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nrc3606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009530437
225 https://doi.org/10.1038/nrc3606
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/s13059-014-0526-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052041316
228 https://doi.org/10.1186/s13059-014-0526-8
229 rdf:type schema:CreativeWork
230 https://app.dimensions.ai/details/publication/pub.1074873071 schema:CreativeWork
231 https://doi.org/10.1006/scbi.2001.0417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017604549
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.ccr.2012.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023188068
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1056/nejm199503093321002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020416142
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1056/nejmoa020177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017266513
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1056/nejmoa1104621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036355137
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/jnci/92.9.699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017040448
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/jnci/djs629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007220641
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1097/00006254-199507000-00012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060258897
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1126/scitranslmed.3004330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005234727
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1158/1078-0432.ccr-08-0196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049534215
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1172/jci65833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010389906
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1371/journal.pone.0036383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039976158
256 rdf:type schema:CreativeWork
257 https://doi.org/10.2353/ajpath.2010.100105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024928264
258 rdf:type schema:CreativeWork
259 https://doi.org/10.4161/onci.25962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025242329
260 rdf:type schema:CreativeWork
261 https://www.grid.ac/institutes/grid.12981.33 schema:alternateName Sun Yat-sen University
262 schema:name Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.
263 State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.
264 rdf:type schema:Organization
265 https://www.grid.ac/institutes/grid.18886.3f schema:alternateName Institute of Cancer Research
266 schema:name Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
267 Centre for Molecular Pathology, The Royal Marsden Hospital, London, UK.
268 Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.488530.2 schema:alternateName Sun Yat-sen University Cancer Center
271 schema:name Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China.
272 State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.5072.0 schema:alternateName Royal Marsden NHS Foundation Trust
275 schema:name Gynecology Unit, The Royal Marsden NHS Foundation Trust, London, UK.
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...