Electronic structure of quasi-one-dimensional superconductor K2Cr3As3 from first-principles calculations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Hao Jiang, Guanghan Cao, Chao Cao

ABSTRACT

The electronic structure of quasi-one-dimensional superconductor K2Cr3As3 is studied through systematic first-principles calculations. The ground state of K2Cr3As3 is paramagnetic. Close to the Fermi level, the Cr-3dz(2), dxy, and d(x(2)-y(2)) orbitals dominate the electronic states, and three bands cross EF to form one 3D Fermi surface sheet and two quasi-1D sheets. The electronic DOS at EF is less than 1/3 of the experimental value, indicating a large electron renormalization factor around EF. Despite of the relatively small atomic numbers, the antisymmetric spin-orbit coupling splitting is sizable (≈60 meV) on the 3D Fermi surface sheet as well as on one of the quasi-1D sheets. Finally, the imaginary part of bare electron susceptibility shows large peaks at Γ, suggesting the presence of large ferromagnetic spin fluctuation in the compound. More... »

PAGES

16054

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep16054

DOI

http://dx.doi.org/10.1038/srep16054

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007269732

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26525099


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Physics, Zhejiang University, Hangzhou 310027, P.R. China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Hao", 
        "id": "sg:person.01364716144.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364716144.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Physics, Zhejiang University, Hangzhou 310027, P.R. China.", 
            "Collaborative Innovation Centre of Advanced Microstructures, Nanjing 210093, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Guanghan", 
        "id": "sg:person.01103731760.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103731760.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hangzhou Normal University", 
          "id": "https://www.grid.ac/institutes/grid.410595.c", 
          "name": [
            "Condensed Matter Group, Department of Physics, Hangzhou Normal University, Hangzhou 310036, P.R. China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Chao", 
        "id": "sg:person.0605055034.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605055034.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.56.12847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003519027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.12847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003519027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-24624-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015825270", 
          "https://doi.org/10.1007/978-3-642-24624-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-24624-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015825270", 
          "https://doi.org/10.1007/978-3-642-24624-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2006.10.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016838491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.020507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021293339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.020507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021293339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40843-015-0021-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022760400", 
          "https://doi.org/10.1007/s40843-015-0021-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(88)90806-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025205781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(88)90806-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025205781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025432382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025432382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.020506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031589192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.020506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031589192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00011120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033120037", 
          "https://doi.org/10.1007/pl00011120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(84)90944-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035483294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(84)90944-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035483294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76672-8_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039967311", 
          "https://doi.org/10.1007/978-3-540-76672-8_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76672-8_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039967311", 
          "https://doi.org/10.1007/978-3-540-76672-8_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2007.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041208656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.235128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043213415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.235128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043213415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.237003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048500963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.237003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048500963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.224501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052597843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.224501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052597843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphyslet:0198000410409500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057009197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.158.383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.158.383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.5856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.5856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.187003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.187003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "The electronic structure of quasi-one-dimensional superconductor K2Cr3As3 is studied through systematic first-principles calculations. The ground state of K2Cr3As3 is paramagnetic. Close to the Fermi level, the Cr-3dz(2), dxy, and d(x(2)-y(2)) orbitals dominate the electronic states, and three bands cross EF to form one 3D Fermi surface sheet and two quasi-1D sheets. The electronic DOS at EF is less than 1/3 of the experimental value, indicating a large electron renormalization factor around EF. Despite of the relatively small atomic numbers, the antisymmetric spin-orbit coupling splitting is sizable (\u224860\u2009meV) on the 3D Fermi surface sheet as well as on one of the quasi-1D sheets. Finally, the imaginary part of bare electron susceptibility shows large peaks at \u0393, suggesting the presence of large ferromagnetic spin fluctuation in the compound.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep16054", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7184094", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7208330", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Electronic structure of quasi-one-dimensional superconductor K2Cr3As3 from first-principles calculations", 
    "pagination": "16054", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "22a0b0e008021fd151d34c8e21b53878cf01a8aee5a21ab4ea44847d64793cd6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26525099"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep16054"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007269732"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep16054", 
      "https://app.dimensions.ai/details/publication/pub.1007269732"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/151103/srep16054/full/srep16054.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep16054'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep16054'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep16054'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep16054'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep16054 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N1111b501dee446ad8c07d4cd0dcb0b8e
4 schema:citation sg:pub.10.1007/978-3-540-76672-8_12
5 sg:pub.10.1007/978-3-642-24624-1
6 sg:pub.10.1007/pl00011120
7 sg:pub.10.1007/s40843-015-0021-x
8 https://doi.org/10.1016/0038-1098(84)90944-x
9 https://doi.org/10.1016/0038-1098(88)90806-x
10 https://doi.org/10.1016/j.cpc.2007.11.016
11 https://doi.org/10.1016/j.jmmm.2006.10.141
12 https://doi.org/10.1051/jphyslet:0198000410409500
13 https://doi.org/10.1103/physrev.158.383
14 https://doi.org/10.1103/physrevb.27.5856
15 https://doi.org/10.1103/physrevb.47.558
16 https://doi.org/10.1103/physrevb.50.17953
17 https://doi.org/10.1103/physrevb.56.12847
18 https://doi.org/10.1103/physrevb.59.1758
19 https://doi.org/10.1103/physrevb.79.224501
20 https://doi.org/10.1103/physrevb.82.235128
21 https://doi.org/10.1103/physrevb.91.020506
22 https://doi.org/10.1103/physrevb.91.020507
23 https://doi.org/10.1103/physrevlett.100.237003
24 https://doi.org/10.1103/physrevlett.108.187003
25 https://doi.org/10.1103/physrevlett.17.1133
26 https://doi.org/10.1103/physrevlett.77.3865
27 https://doi.org/10.1103/physrevx.5.011013
28 schema:datePublished 2015-12
29 schema:datePublishedReg 2015-12-01
30 schema:description The electronic structure of quasi-one-dimensional superconductor K2Cr3As3 is studied through systematic first-principles calculations. The ground state of K2Cr3As3 is paramagnetic. Close to the Fermi level, the Cr-3dz(2), dxy, and d(x(2)-y(2)) orbitals dominate the electronic states, and three bands cross EF to form one 3D Fermi surface sheet and two quasi-1D sheets. The electronic DOS at EF is less than 1/3 of the experimental value, indicating a large electron renormalization factor around EF. Despite of the relatively small atomic numbers, the antisymmetric spin-orbit coupling splitting is sizable (≈60 meV) on the 3D Fermi surface sheet as well as on one of the quasi-1D sheets. Finally, the imaginary part of bare electron susceptibility shows large peaks at Γ, suggesting the presence of large ferromagnetic spin fluctuation in the compound.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf Nb251ed178afd4ff69cac2ba9f5d8830a
35 Ndc7f73199da84d478e1ff825c1ee5681
36 sg:journal.1045337
37 schema:name Electronic structure of quasi-one-dimensional superconductor K2Cr3As3 from first-principles calculations
38 schema:pagination 16054
39 schema:productId N0cc3187f868b4a61af3aa2136cfd11c0
40 N6883eada1c5444c7b3e9f04804582593
41 N68ee3bc5eb1c43aa9b6619c401d476ff
42 N6913c954ea31430499f11c456d2ab8ba
43 N7b9ab0407a24429285b554617f6513f5
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007269732
45 https://doi.org/10.1038/srep16054
46 schema:sdDatePublished 2019-04-10T22:19
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N4befd07b37aa4f8d82bf95d58be2332c
49 schema:url http://www.nature.com/srep/2015/151103/srep16054/full/srep16054.html
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0cc3187f868b4a61af3aa2136cfd11c0 schema:name doi
54 schema:value 10.1038/srep16054
55 rdf:type schema:PropertyValue
56 N1111b501dee446ad8c07d4cd0dcb0b8e rdf:first sg:person.01364716144.56
57 rdf:rest N8f5703576ef94b45be49cae14d10973a
58 N4befd07b37aa4f8d82bf95d58be2332c schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N6883eada1c5444c7b3e9f04804582593 schema:name dimensions_id
61 schema:value pub.1007269732
62 rdf:type schema:PropertyValue
63 N68ee3bc5eb1c43aa9b6619c401d476ff schema:name readcube_id
64 schema:value 22a0b0e008021fd151d34c8e21b53878cf01a8aee5a21ab4ea44847d64793cd6
65 rdf:type schema:PropertyValue
66 N6913c954ea31430499f11c456d2ab8ba schema:name nlm_unique_id
67 schema:value 101563288
68 rdf:type schema:PropertyValue
69 N7b9ab0407a24429285b554617f6513f5 schema:name pubmed_id
70 schema:value 26525099
71 rdf:type schema:PropertyValue
72 N8f5703576ef94b45be49cae14d10973a rdf:first sg:person.01103731760.39
73 rdf:rest N90a40bcbf14142908512fca234248e5a
74 N90a40bcbf14142908512fca234248e5a rdf:first sg:person.0605055034.65
75 rdf:rest rdf:nil
76 Nb251ed178afd4ff69cac2ba9f5d8830a schema:volumeNumber 5
77 rdf:type schema:PublicationVolume
78 Ndc7f73199da84d478e1ff825c1ee5681 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
84 schema:name Other Physical Sciences
85 rdf:type schema:DefinedTerm
86 sg:grant.7184094 http://pending.schema.org/fundedItem sg:pub.10.1038/srep16054
87 rdf:type schema:MonetaryGrant
88 sg:grant.7208330 http://pending.schema.org/fundedItem sg:pub.10.1038/srep16054
89 rdf:type schema:MonetaryGrant
90 sg:journal.1045337 schema:issn 2045-2322
91 schema:name Scientific Reports
92 rdf:type schema:Periodical
93 sg:person.01103731760.39 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
94 schema:familyName Cao
95 schema:givenName Guanghan
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103731760.39
97 rdf:type schema:Person
98 sg:person.01364716144.56 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
99 schema:familyName Jiang
100 schema:givenName Hao
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364716144.56
102 rdf:type schema:Person
103 sg:person.0605055034.65 schema:affiliation https://www.grid.ac/institutes/grid.410595.c
104 schema:familyName Cao
105 schema:givenName Chao
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605055034.65
107 rdf:type schema:Person
108 sg:pub.10.1007/978-3-540-76672-8_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039967311
109 https://doi.org/10.1007/978-3-540-76672-8_12
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-3-642-24624-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015825270
112 https://doi.org/10.1007/978-3-642-24624-1
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/pl00011120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033120037
115 https://doi.org/10.1007/pl00011120
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s40843-015-0021-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022760400
118 https://doi.org/10.1007/s40843-015-0021-x
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0038-1098(84)90944-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035483294
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0038-1098(88)90806-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025205781
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.cpc.2007.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041208656
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jmmm.2006.10.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016838491
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1051/jphyslet:0198000410409500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057009197
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrev.158.383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060435582
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.27.5856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532550
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevb.56.12847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003519027
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevb.79.224501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052597843
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevb.82.235128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043213415
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevb.91.020506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031589192
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.91.020507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021293339
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.100.237003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048500963
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.108.187003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759688
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.17.1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769116
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevx.5.011013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432382
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
161 schema:name Collaborative Innovation Centre of Advanced Microstructures, Nanjing 210093, China.
162 Department of Physics, Zhejiang University, Hangzhou 310027, P.R. China.
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.410595.c schema:alternateName Hangzhou Normal University
165 schema:name Condensed Matter Group, Department of Physics, Hangzhou Normal University, Hangzhou 310036, P.R. China.
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...