Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-11-13

AUTHORS

Alessandro Chiesa, Paolo Santini, Dario Gerace, James Raftery, Andrew A. Houck, Stefano Carretta

ABSTRACT

Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence. More... »

PAGES

16036

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep16036

DOI

http://dx.doi.org/10.1038/srep16036

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039806371

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26563516


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Fisica e Scienze della Terra, Universit\u00e0 di Parma, I-43124, Parma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Dipartimento di Fisica e Scienze della Terra, Universit\u00e0 di Parma, I-43124, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiesa", 
        "givenName": "Alessandro", 
        "id": "sg:person.01033420117.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033420117.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Fisica e Scienze della Terra, Universit\u00e0 di Parma, I-43124, Parma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Dipartimento di Fisica e Scienze della Terra, Universit\u00e0 di Parma, I-43124, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santini", 
        "givenName": "Paolo", 
        "id": "sg:person.01221632746.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221632746.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Fisica, Universit\u00e0 di Pavia, via Bassi 6, I-27100, Pavia, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8982.b", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Pavia, via Bassi 6, I-27100, Pavia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerace", 
        "givenName": "Dario", 
        "id": "sg:person.01200417554.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200417554.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raftery", 
        "givenName": "James", 
        "id": "sg:person.01367045167.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367045167.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Houck", 
        "givenName": "Andrew A.", 
        "id": "sg:person.0735051104.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735051104.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Fisica e Scienze della Terra, Universit\u00e0 di Parma, I-43124, Parma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Dipartimento di Fisica e Scienze della Terra, Universit\u00e0 di Parma, I-43124, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carretta", 
        "givenName": "Stefano", 
        "id": "sg:person.0651066246.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651066246.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjqt9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032259898", 
          "https://doi.org/10.1140/epjqt9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjqt/s40507-015-0021-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034097310", 
          "https://doi.org/10.1140/epjqt/s40507-015-0021-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014316438", 
          "https://doi.org/10.1038/nature13171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02650179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038336282", 
          "https://doi.org/10.1007/bf02650179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014596138", 
          "https://doi.org/10.1038/nature08121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004988594", 
          "https://doi.org/10.1038/ncomms8654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10909-008-9774-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024153046", 
          "https://doi.org/10.1007/s10909-008-9774-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050351805", 
          "https://doi.org/10.1038/nphys2251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004905242", 
          "https://doi.org/10.1038/nphys3050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035701412", 
          "https://doi.org/10.1038/srep07482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029810190", 
          "https://doi.org/10.1038/nature07128"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11-13", 
    "datePublishedReg": "2015-11-13", 
    "description": "Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep16036", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "digital quantum simulator", 
      "quantum simulator", 
      "universal quantum simulator", 
      "arrays of qubits", 
      "transverse-field Ising model", 
      "two-dimensional Hubbard model", 
      "large computational resources", 
      "classical computers", 
      "quantum computation", 
      "quantum gates", 
      "Ising model", 
      "Hubbard model", 
      "qubits", 
      "time evolution", 
      "body problem", 
      "computational resources", 
      "promising platform", 
      "resonator", 
      "viable scheme", 
      "decoherence", 
      "physical chemistry", 
      "representative examples", 
      "physics", 
      "scheme", 
      "Hamiltonian", 
      "array", 
      "scalable architecture", 
      "computation", 
      "model", 
      "simulator", 
      "gate", 
      "art technologies", 
      "problem", 
      "solution", 
      "state", 
      "great challenge", 
      "computer", 
      "source", 
      "evolution", 
      "circuit", 
      "architecture", 
      "chemistry", 
      "platform", 
      "main source", 
      "technology", 
      "control", 
      "resources", 
      "proposal", 
      "challenges", 
      "sequence", 
      "example", 
      "local control"
    ], 
    "name": "Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits", 
    "pagination": "16036", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039806371"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep16036"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26563516"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep16036", 
      "https://app.dimensions.ai/details/publication/pub.1039806371"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_678.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep16036"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep16036'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep16036'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep16036'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep16036'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      88 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep16036 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N3516e4f8a2c24d6491e839a85032104b
4 schema:citation sg:pub.10.1007/bf02650179
5 sg:pub.10.1007/s10909-008-9774-x
6 sg:pub.10.1038/nature07128
7 sg:pub.10.1038/nature08121
8 sg:pub.10.1038/nature13171
9 sg:pub.10.1038/ncomms8654
10 sg:pub.10.1038/nphys2251
11 sg:pub.10.1038/nphys3050
12 sg:pub.10.1038/srep07482
13 sg:pub.10.1140/epjqt/s40507-015-0021-5
14 sg:pub.10.1140/epjqt9
15 schema:datePublished 2015-11-13
16 schema:datePublishedReg 2015-11-13
17 schema:description Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N0908ee71ae3d4c44b8311ca83345691a
21 N81d30e27f09a428abb2597382fa0a668
22 sg:journal.1045337
23 schema:keywords Hamiltonian
24 Hubbard model
25 Ising model
26 architecture
27 array
28 arrays of qubits
29 art technologies
30 body problem
31 challenges
32 chemistry
33 circuit
34 classical computers
35 computation
36 computational resources
37 computer
38 control
39 decoherence
40 digital quantum simulator
41 evolution
42 example
43 gate
44 great challenge
45 large computational resources
46 local control
47 main source
48 model
49 physical chemistry
50 physics
51 platform
52 problem
53 promising platform
54 proposal
55 quantum computation
56 quantum gates
57 quantum simulator
58 qubits
59 representative examples
60 resonator
61 resources
62 scalable architecture
63 scheme
64 sequence
65 simulator
66 solution
67 source
68 state
69 technology
70 time evolution
71 transverse-field Ising model
72 two-dimensional Hubbard model
73 universal quantum simulator
74 viable scheme
75 schema:name Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits
76 schema:pagination 16036
77 schema:productId N4ab53d64813a4766b909370894d66248
78 N503dad391ece41f085db2ab166a54534
79 N6e11370c748a4617804d2553aacdd06f
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039806371
81 https://doi.org/10.1038/srep16036
82 schema:sdDatePublished 2022-10-01T06:41
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N8c05e04d8ab54500a6d38bbd774756cb
85 schema:url https://doi.org/10.1038/srep16036
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N0908ee71ae3d4c44b8311ca83345691a schema:volumeNumber 5
90 rdf:type schema:PublicationVolume
91 N3516e4f8a2c24d6491e839a85032104b rdf:first sg:person.01033420117.26
92 rdf:rest N680dfd4ac5e0431ba080c002a1df5057
93 N4ab53d64813a4766b909370894d66248 schema:name dimensions_id
94 schema:value pub.1039806371
95 rdf:type schema:PropertyValue
96 N503dad391ece41f085db2ab166a54534 schema:name doi
97 schema:value 10.1038/srep16036
98 rdf:type schema:PropertyValue
99 N680dfd4ac5e0431ba080c002a1df5057 rdf:first sg:person.01221632746.28
100 rdf:rest N9d16af0cc8034aa3b58f1b785904a93d
101 N6e11370c748a4617804d2553aacdd06f schema:name pubmed_id
102 schema:value 26563516
103 rdf:type schema:PropertyValue
104 N81d30e27f09a428abb2597382fa0a668 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N8c05e04d8ab54500a6d38bbd774756cb schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N9d16af0cc8034aa3b58f1b785904a93d rdf:first sg:person.01200417554.24
109 rdf:rest Nf5c9468f59ce48c0ad27db8036440339
110 Nd3d49f7f6ed94af5b9c8dd790667ccf7 rdf:first sg:person.0651066246.66
111 rdf:rest rdf:nil
112 Nee741d72e653416180f39cf7ab8fd25b rdf:first sg:person.0735051104.78
113 rdf:rest Nd3d49f7f6ed94af5b9c8dd790667ccf7
114 Nf5c9468f59ce48c0ad27db8036440339 rdf:first sg:person.01367045167.46
115 rdf:rest Nee741d72e653416180f39cf7ab8fd25b
116 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
120 schema:name Quantum Physics
121 rdf:type schema:DefinedTerm
122 sg:journal.1045337 schema:issn 2045-2322
123 schema:name Scientific Reports
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.01033420117.26 schema:affiliation grid-institutes:grid.10383.39
127 schema:familyName Chiesa
128 schema:givenName Alessandro
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033420117.26
130 rdf:type schema:Person
131 sg:person.01200417554.24 schema:affiliation grid-institutes:grid.8982.b
132 schema:familyName Gerace
133 schema:givenName Dario
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200417554.24
135 rdf:type schema:Person
136 sg:person.01221632746.28 schema:affiliation grid-institutes:grid.10383.39
137 schema:familyName Santini
138 schema:givenName Paolo
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221632746.28
140 rdf:type schema:Person
141 sg:person.01367045167.46 schema:affiliation grid-institutes:grid.16750.35
142 schema:familyName Raftery
143 schema:givenName James
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367045167.46
145 rdf:type schema:Person
146 sg:person.0651066246.66 schema:affiliation grid-institutes:grid.10383.39
147 schema:familyName Carretta
148 schema:givenName Stefano
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651066246.66
150 rdf:type schema:Person
151 sg:person.0735051104.78 schema:affiliation grid-institutes:grid.16750.35
152 schema:familyName Houck
153 schema:givenName Andrew A.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735051104.78
155 rdf:type schema:Person
156 sg:pub.10.1007/bf02650179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038336282
157 https://doi.org/10.1007/bf02650179
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s10909-008-9774-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024153046
160 https://doi.org/10.1007/s10909-008-9774-x
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature07128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029810190
163 https://doi.org/10.1038/nature07128
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature08121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014596138
166 https://doi.org/10.1038/nature08121
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nature13171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014316438
169 https://doi.org/10.1038/nature13171
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/ncomms8654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004988594
172 https://doi.org/10.1038/ncomms8654
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nphys2251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050351805
175 https://doi.org/10.1038/nphys2251
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nphys3050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004905242
178 https://doi.org/10.1038/nphys3050
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/srep07482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035701412
181 https://doi.org/10.1038/srep07482
182 rdf:type schema:CreativeWork
183 sg:pub.10.1140/epjqt/s40507-015-0021-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034097310
184 https://doi.org/10.1140/epjqt/s40507-015-0021-5
185 rdf:type schema:CreativeWork
186 sg:pub.10.1140/epjqt9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032259898
187 https://doi.org/10.1140/epjqt9
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.10383.39 schema:alternateName Dipartimento di Fisica e Scienze della Terra, Università di Parma, I-43124, Parma, Italy
190 schema:name Dipartimento di Fisica e Scienze della Terra, Università di Parma, I-43124, Parma, Italy
191 rdf:type schema:Organization
192 grid-institutes:grid.16750.35 schema:alternateName Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA
193 schema:name Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA
194 rdf:type schema:Organization
195 grid-institutes:grid.8982.b schema:alternateName Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100, Pavia, Italy
196 schema:name Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100, Pavia, Italy
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...