Microwave field frequency and current density modulated skyrmion-chain in nanotrack View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Fusheng Ma, Motohiko Ezawa, Yan Zhou

ABSTRACT

Magnetic skyrmions are promising candidates as information carriers for the next-generation spintronic devices because of their small size, facile current-driven motion and topological stability. The controllable nucleation and motion of skyrmions in magnetic nanostructures will be essential in future skyrmionic devices. Here, we present the microwave assisted nucleation and motion of skyrmion-chains in magnetic nanotrack by micromagnetic simulation. A skyrmion-chain is a one-dimensional cluster of equally spaced skyrmions. A skyrmion-chain conveys an integer bit n when it consists of n skyrmions. A series of skyrmion-chains with various lengths is generated and moved in the nanotrack driven by spin-polarized current. The period, length and spacing of the skyrmion-chains can be dynamically manipulated by controlling either the frequency of the microwave field or the time dependent spin-polarized current density. A skyrmion-chain behaves as a massless particle, where it stops without delay when the current is stopped. Their velocity is found to be linearly dependent on the current density and insensitive to the frequency and amplitude of the excitation microwave field. Uniform motion of trains of skyrmion-chains in nanotrack offers a promising approach for spintronic multi-bit memories containing series of skyrmion-chains to represent data stream. More... »

PAGES

15154

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep15154

DOI

http://dx.doi.org/10.1038/srep15154

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013078170

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26468929


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Temasek Laboratories, National University of Singapore, Singapore."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Fusheng", 
        "id": "sg:person.01151750505.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151750505.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Applied Physics, University of Tokyo, Hongo 7-3-1, Tokyo 113-8656, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezawa", 
        "givenName": "Motohiko", 
        "id": "sg:person.07724251271.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07724251271.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "York-Nanjing Joint Center for Spintronics and Nano Engineering (YNJC), School of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China.", 
            "Department of Physics, University of Hong Kong, Hong Kong, P. R. China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Yan", 
        "id": "sg:person.01120426326.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120426326.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000753350", 
          "https://doi.org/10.1038/nmat2916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004585936", 
          "https://doi.org/10.1038/nphys464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004585936", 
          "https://doi.org/10.1038/nphys464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ra07326f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006186050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1240573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006493980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006853479", 
          "https://doi.org/10.1038/nnano.2013.29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007469159", 
          "https://doi.org/10.1038/nnano.2008.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007764703", 
          "https://doi.org/10.1038/ncomms5652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.174428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008909495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.174428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008909495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(58)90076-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010776776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(58)90076-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010776776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.100408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013422307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.100408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013422307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017462081", 
          "https://doi.org/10.1038/nphys2045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/100/57002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018672975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019530671", 
          "https://doi.org/10.1038/nnano.2013.176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10452-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021678993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022087552", 
          "https://doi.org/10.1038/nnano.2013.69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022657870", 
          "https://doi.org/10.1038/nnano.2013.210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.134405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023328419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.134405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023328419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/44/39/392001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025192850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026811477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026811477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028432339", 
          "https://doi.org/10.1038/nature03009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028432339", 
          "https://doi.org/10.1038/nature03009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030997696", 
          "https://doi.org/10.1038/ncomms1990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.127204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032303895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.127204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032303895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.064401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033316447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.064401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033316447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033698995", 
          "https://doi.org/10.1038/srep07643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.197202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034010182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.197202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034010182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037950420", 
          "https://doi.org/10.1038/ncomms2442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.184422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040967075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.184422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040967075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35082010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045224542", 
          "https://doi.org/10.1038/35082010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047328087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047328087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2003-10112-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047358232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051373373", 
          "https://doi.org/10.1038/nnano.2013.174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051918806", 
          "https://doi.org/10.1038/nmat1477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051918806", 
          "https://doi.org/10.1038/nmat1477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052510644", 
          "https://doi.org/10.1038/nnano.2013.243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.077205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052656212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.077205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052656212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2209177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057847244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.267201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.267201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.207203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.207203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.207205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.207205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.037204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.037204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2009.2024426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061681979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1070595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1108813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1154587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1195709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1234657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062468000"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "Magnetic skyrmions are promising candidates as information carriers for the next-generation spintronic devices because of their small size, facile current-driven motion and topological stability. The controllable nucleation and motion of skyrmions in magnetic nanostructures will be essential in future skyrmionic devices. Here, we present the microwave assisted nucleation and motion of skyrmion-chains in magnetic nanotrack by micromagnetic simulation. A skyrmion-chain is a one-dimensional cluster of equally spaced skyrmions. A skyrmion-chain conveys an integer bit n when it consists of n skyrmions. A series of skyrmion-chains with various lengths is generated and moved in the nanotrack driven by spin-polarized current. The period, length and spacing of the skyrmion-chains can be dynamically manipulated by controlling either the frequency of the microwave field or the time dependent spin-polarized current density. A skyrmion-chain behaves as a massless particle, where it stops without delay when the current is stopped. Their velocity is found to be linearly dependent on the current density and insensitive to the frequency and amplitude of the excitation microwave field. Uniform motion of trains of skyrmion-chains in nanotrack offers a promising approach for spintronic multi-bit memories containing series of skyrmion-chains to represent data stream. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep15154", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5884791", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6125548", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7207823", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5863010", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Microwave field frequency and current density modulated skyrmion-chain in nanotrack", 
    "pagination": "15154", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3e4d46b0e80385a42f72beed856e6ea4cd637b36dece437791e0080b6cd131f3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26468929"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep15154"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013078170"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep15154", 
      "https://app.dimensions.ai/details/publication/pub.1013078170"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/151015/srep15154/full/srep15154.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep15154'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep15154'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep15154'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep15154'


 

This table displays all metadata directly associated to this object as RDF triples.

273 TRIPLES      21 PREDICATES      81 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep15154 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N445fdf40988b4d4ba522b22a0b21f6c5
4 schema:citation sg:pub.10.1038/35082010
5 sg:pub.10.1038/nature02441
6 sg:pub.10.1038/nature03009
7 sg:pub.10.1038/nature05056
8 sg:pub.10.1038/nature09124
9 sg:pub.10.1038/ncomms1990
10 sg:pub.10.1038/ncomms2442
11 sg:pub.10.1038/ncomms5652
12 sg:pub.10.1038/nmat1477
13 sg:pub.10.1038/nmat2916
14 sg:pub.10.1038/nnano.2008.1
15 sg:pub.10.1038/nnano.2013.174
16 sg:pub.10.1038/nnano.2013.176
17 sg:pub.10.1038/nnano.2013.210
18 sg:pub.10.1038/nnano.2013.243
19 sg:pub.10.1038/nnano.2013.29
20 sg:pub.10.1038/nnano.2013.69
21 sg:pub.10.1038/nphys2045
22 sg:pub.10.1038/nphys464
23 sg:pub.10.1038/srep07643
24 https://doi.org/10.1016/0022-3697(58)90076-3
25 https://doi.org/10.1016/0029-5582(62)90775-7
26 https://doi.org/10.1039/c4ra07326f
27 https://doi.org/10.1063/1.2209177
28 https://doi.org/10.1088/0022-3727/44/39/392001
29 https://doi.org/10.1103/physrev.120.91
30 https://doi.org/10.1103/physrevb.83.100408
31 https://doi.org/10.1103/physrevb.84.064401
32 https://doi.org/10.1103/physrevb.86.054432
33 https://doi.org/10.1103/physrevb.88.184422
34 https://doi.org/10.1103/physrevb.89.134405
35 https://doi.org/10.1103/physrevb.90.174428
36 https://doi.org/10.1103/physrevlett.105.197202
37 https://doi.org/10.1103/physrevlett.108.267201
38 https://doi.org/10.1103/physrevlett.92.077205
39 https://doi.org/10.1103/physrevlett.92.086601
40 https://doi.org/10.1103/physrevlett.92.207203
41 https://doi.org/10.1103/physrevlett.93.127204
42 https://doi.org/10.1103/physrevlett.97.207205
43 https://doi.org/10.1103/physrevlett.98.037204
44 https://doi.org/10.1109/tmag.2009.2024426
45 https://doi.org/10.1126/science.1070595
46 https://doi.org/10.1126/science.1108813
47 https://doi.org/10.1126/science.1145799
48 https://doi.org/10.1126/science.1154587
49 https://doi.org/10.1126/science.1166767
50 https://doi.org/10.1126/science.1195709
51 https://doi.org/10.1126/science.1234657
52 https://doi.org/10.1126/science.1240573
53 https://doi.org/10.1209/0295-5075/100/57002
54 https://doi.org/10.1209/epl/i2003-10112-5
55 https://doi.org/10.1209/epl/i2004-10452-6
56 schema:datePublished 2015-12
57 schema:datePublishedReg 2015-12-01
58 schema:description Magnetic skyrmions are promising candidates as information carriers for the next-generation spintronic devices because of their small size, facile current-driven motion and topological stability. The controllable nucleation and motion of skyrmions in magnetic nanostructures will be essential in future skyrmionic devices. Here, we present the microwave assisted nucleation and motion of skyrmion-chains in magnetic nanotrack by micromagnetic simulation. A skyrmion-chain is a one-dimensional cluster of equally spaced skyrmions. A skyrmion-chain conveys an integer bit n when it consists of n skyrmions. A series of skyrmion-chains with various lengths is generated and moved in the nanotrack driven by spin-polarized current. The period, length and spacing of the skyrmion-chains can be dynamically manipulated by controlling either the frequency of the microwave field or the time dependent spin-polarized current density. A skyrmion-chain behaves as a massless particle, where it stops without delay when the current is stopped. Their velocity is found to be linearly dependent on the current density and insensitive to the frequency and amplitude of the excitation microwave field. Uniform motion of trains of skyrmion-chains in nanotrack offers a promising approach for spintronic multi-bit memories containing series of skyrmion-chains to represent data stream.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N836e81a7e6be4a76ae0a6818a723eb35
63 Ncce0ffd67b9240a4a36294953ccde1b8
64 sg:journal.1045337
65 schema:name Microwave field frequency and current density modulated skyrmion-chain in nanotrack
66 schema:pagination 15154
67 schema:productId N0625afc3618e4b74a5375bb41fbedf17
68 N343744c0ef4846c094e2e583fc85bda1
69 N390f9d062a214ac68369852eedf6b9c7
70 Na9ca48c56b704010a952add63366ef7e
71 Nb613b83d805e4b7db7e45fab8db53e22
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013078170
73 https://doi.org/10.1038/srep15154
74 schema:sdDatePublished 2019-04-10T13:55
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N2c09b70bddbb40d08a693043ae07870d
77 schema:url http://www.nature.com/srep/2015/151015/srep15154/full/srep15154.html
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0625afc3618e4b74a5375bb41fbedf17 schema:name dimensions_id
82 schema:value pub.1013078170
83 rdf:type schema:PropertyValue
84 N2c09b70bddbb40d08a693043ae07870d schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N343744c0ef4846c094e2e583fc85bda1 schema:name nlm_unique_id
87 schema:value 101563288
88 rdf:type schema:PropertyValue
89 N390f9d062a214ac68369852eedf6b9c7 schema:name doi
90 schema:value 10.1038/srep15154
91 rdf:type schema:PropertyValue
92 N445fdf40988b4d4ba522b22a0b21f6c5 rdf:first sg:person.01151750505.53
93 rdf:rest Na303ef46dae3443db06734e369965f1e
94 N6d5797c23eeb4018a6b39e6147de63f2 rdf:first sg:person.01120426326.02
95 rdf:rest rdf:nil
96 N836e81a7e6be4a76ae0a6818a723eb35 schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 Na303ef46dae3443db06734e369965f1e rdf:first sg:person.07724251271.76
99 rdf:rest N6d5797c23eeb4018a6b39e6147de63f2
100 Na9ca48c56b704010a952add63366ef7e schema:name pubmed_id
101 schema:value 26468929
102 rdf:type schema:PropertyValue
103 Nb613b83d805e4b7db7e45fab8db53e22 schema:name readcube_id
104 schema:value 3e4d46b0e80385a42f72beed856e6ea4cd637b36dece437791e0080b6cd131f3
105 rdf:type schema:PropertyValue
106 Ncce0ffd67b9240a4a36294953ccde1b8 schema:volumeNumber 5
107 rdf:type schema:PublicationVolume
108 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
109 schema:name Technology
110 rdf:type schema:DefinedTerm
111 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
112 schema:name Communications Technologies
113 rdf:type schema:DefinedTerm
114 sg:grant.5863010 http://pending.schema.org/fundedItem sg:pub.10.1038/srep15154
115 rdf:type schema:MonetaryGrant
116 sg:grant.5884791 http://pending.schema.org/fundedItem sg:pub.10.1038/srep15154
117 rdf:type schema:MonetaryGrant
118 sg:grant.6125548 http://pending.schema.org/fundedItem sg:pub.10.1038/srep15154
119 rdf:type schema:MonetaryGrant
120 sg:grant.7207823 http://pending.schema.org/fundedItem sg:pub.10.1038/srep15154
121 rdf:type schema:MonetaryGrant
122 sg:journal.1045337 schema:issn 2045-2322
123 schema:name Scientific Reports
124 rdf:type schema:Periodical
125 sg:person.01120426326.02 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
126 schema:familyName Zhou
127 schema:givenName Yan
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120426326.02
129 rdf:type schema:Person
130 sg:person.01151750505.53 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
131 schema:familyName Ma
132 schema:givenName Fusheng
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151750505.53
134 rdf:type schema:Person
135 sg:person.07724251271.76 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
136 schema:familyName Ezawa
137 schema:givenName Motohiko
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07724251271.76
139 rdf:type schema:Person
140 sg:pub.10.1038/35082010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045224542
141 https://doi.org/10.1038/35082010
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nature02441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032107810
144 https://doi.org/10.1038/nature02441
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature03009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028432339
147 https://doi.org/10.1038/nature03009
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nature05056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026381550
150 https://doi.org/10.1038/nature05056
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
153 https://doi.org/10.1038/nature09124
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/ncomms1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030997696
156 https://doi.org/10.1038/ncomms1990
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/ncomms2442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037950420
159 https://doi.org/10.1038/ncomms2442
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ncomms5652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007764703
162 https://doi.org/10.1038/ncomms5652
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nmat1477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051918806
165 https://doi.org/10.1038/nmat1477
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nmat2916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000753350
168 https://doi.org/10.1038/nmat2916
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nnano.2008.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007469159
171 https://doi.org/10.1038/nnano.2008.1
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nnano.2013.174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051373373
174 https://doi.org/10.1038/nnano.2013.174
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nnano.2013.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019530671
177 https://doi.org/10.1038/nnano.2013.176
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nnano.2013.210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022657870
180 https://doi.org/10.1038/nnano.2013.210
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nnano.2013.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052510644
183 https://doi.org/10.1038/nnano.2013.243
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nnano.2013.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006853479
186 https://doi.org/10.1038/nnano.2013.29
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nnano.2013.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087552
189 https://doi.org/10.1038/nnano.2013.69
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nphys2045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017462081
192 https://doi.org/10.1038/nphys2045
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nphys464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004585936
195 https://doi.org/10.1038/nphys464
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/srep07643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033698995
198 https://doi.org/10.1038/srep07643
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/0022-3697(58)90076-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010776776
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/0029-5582(62)90775-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019864545
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1039/c4ra07326f schema:sameAs https://app.dimensions.ai/details/publication/pub.1006186050
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1063/1.2209177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057847244
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1088/0022-3727/44/39/392001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025192850
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrev.120.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060423562
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevb.83.100408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013422307
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevb.84.064401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033316447
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevb.86.054432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026811477
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevb.88.184422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040967075
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevb.89.134405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023328419
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevb.90.174428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008909495
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.105.197202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034010182
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.108.267201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760008
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.92.077205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052656212
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.92.086601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047328087
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.92.207203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828394
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevlett.93.127204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032303895
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevlett.97.207205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833135
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevlett.98.037204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833427
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1109/tmag.2009.2024426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061681979
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1126/science.1070595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446430
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1108813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451522
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1145799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456283
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1154587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457506
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1126/science.1195709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462778
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1126/science.1234657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062468000
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1126/science.1240573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006493980
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1209/0295-5075/100/57002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018672975
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1209/epl/i2003-10112-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047358232
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1209/epl/i2004-10452-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678993
263 rdf:type schema:CreativeWork
264 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
265 schema:name Department of Physics, University of Hong Kong, Hong Kong, P. R. China.
266 York-Nanjing Joint Center for Spintronics and Nano Engineering (YNJC), School of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China.
267 rdf:type schema:Organization
268 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
269 schema:name Department of Applied Physics, University of Tokyo, Hongo 7-3-1, Tokyo 113-8656, Japan.
270 rdf:type schema:Organization
271 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
272 schema:name Temasek Laboratories, National University of Singapore, Singapore.
273 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...