Fabrication of large size graphene and Ti- MWCNTs/ large size graphene composites: their photocatalytic properties and potential application View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09-18

AUTHORS

Kefayat Ullah, Won-Chun Oh

ABSTRACT

Large size graphene (LSG) and multiwall carbon nanotubes (MWCNTs) on LSG were synthesized on a copper surface via chemical vapor deposition (CVD) at low temperature and normal pressure. The LSG were formed through an easy chemical cyclic reaction in which liquid benzene was heated to a temperature below its boiling point to create benzene vapors as graphene precursor material. The reaction mechanism was observed, and the time-dependent analysis of the reaction revealed that mounds of the carbon nanotubes had grown as a result of the island that was found on the LSG sheet. The implications of the mechanism that we have introduced were investigated by coating a titanium sheet on the MWCNTs/LSG and LSG on the semiconductor electronic device. The photonic response was observed to be markedly high, which can be attributed to the positive synergetic effect between the Ti and LSG sheet of our prepared composites. More... »

PAGES

14242

References to SciGraph publications

  • 2009-03. How silicon leaves the scene in NATURE MATERIALS
  • 2014-06-30. Graphene from Amorphous Titanium Carbide by Chlorination under 200°C and Atmospheric Pressures in SCIENTIFIC REPORTS
  • 2009-02-15. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons in NATURE MATERIALS
  • 2008-03-30. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor in NATURE NANOTECHNOLOGY
  • 2009-02-08. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide in NATURE MATERIALS
  • 2009-09. Growth of aligned multiwalled carbon nanotubes on bulk copper substrates by chemical vapor deposition in JOURNAL OF MATERIALS RESEARCH
  • 2010-03. Can graphene set new standards? in NATURE NANOTECHNOLOGY
  • 2010-10-03. Scalable templated growth of graphene nanoribbons on SiC in NATURE NANOTECHNOLOGY
  • 2011-05-08. Spatially resolving edge states of chiral graphene nanoribbons in NATURE PHYSICS
  • 2013-04-04. Raman spectroscopy as a versatile tool for studying the properties of graphene in NATURE NANOTECHNOLOGY
  • 2013-01-28. Direct Transformation of Amorphous Silicon Carbide into Graphene under Low Temperature and Ambient Pressure in SCIENTIFIC REPORTS
  • 2012-02-05. The shear mode of multilayer graphene in NATURE MATERIALS
  • 2008-04-06. Epitaxial graphene on ruthenium in NATURE MATERIALS
  • 2009-01-14. Large-scale pattern growth of graphene films for stretchable transparent electrodes in NATURE
  • 2012-01. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum in NATURE COMMUNICATIONS
  • 2014-07-30. Visualisation of edge effects in side-gated graphene nanodevices in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep14242

    DOI

    http://dx.doi.org/10.1038/srep14242

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040658613

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26384216


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do, Korea, 356-706", 
              "id": "http://www.grid.ac/institutes/grid.411977.d", 
              "name": [
                "Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do, Korea, 356-706"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ullah", 
            "givenName": "Kefayat", 
            "id": "sg:person.011537023773.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537023773.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do, Korea, 356-706", 
              "id": "http://www.grid.ac/institutes/grid.411977.d", 
              "name": [
                "Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do, Korea, 356-706"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oh", 
            "givenName": "Won-Chun", 
            "id": "sg:person.015032760145.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015032760145.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmat2378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010106459", 
              "https://doi.org/10.1038/nmat2378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018124713", 
              "https://doi.org/10.1038/nnano.2010.192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040485592", 
              "https://doi.org/10.1038/nphys1991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep05494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005345079", 
              "https://doi.org/10.1038/srep05494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000716507", 
              "https://doi.org/10.1038/nnano.2010.40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.2009.0339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008507321", 
              "https://doi.org/10.1557/jmr.2009.0339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036413274", 
              "https://doi.org/10.1038/ncomms1702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036191349", 
              "https://doi.org/10.1038/nmat2166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep05881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039552016", 
              "https://doi.org/10.1038/srep05881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032305837", 
              "https://doi.org/10.1038/nmat2382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042577727", 
              "https://doi.org/10.1038/nmat3245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029967133", 
              "https://doi.org/10.1038/nmat2392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024324186", 
              "https://doi.org/10.1038/nnano.2008.67"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015305822", 
              "https://doi.org/10.1038/nnano.2013.46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep01148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019416406", 
              "https://doi.org/10.1038/srep01148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010521124", 
              "https://doi.org/10.1038/nature07719"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-09-18", 
        "datePublishedReg": "2015-09-18", 
        "description": "Large size graphene (LSG) and multiwall carbon nanotubes (MWCNTs) on LSG were synthesized on a copper surface via chemical vapor deposition (CVD) at low temperature and normal pressure. The LSG were formed through an easy chemical cyclic reaction in which liquid benzene was heated to a temperature below its boiling point to create benzene vapors as graphene precursor material. The reaction mechanism was observed, and the time-dependent analysis of the reaction revealed that mounds of the carbon nanotubes had grown as a result of the island that was found on the LSG sheet. The implications of the mechanism that we have introduced were investigated by coating a titanium sheet on the MWCNTs/LSG and LSG on the semiconductor electronic device. The photonic response was observed to be markedly high, which can be attributed to the positive synergetic effect between the Ti and LSG sheet of our prepared composites. ", 
        "genre": "article", 
        "id": "sg:pub.10.1038/srep14242", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "large-size graphene", 
          "multiwall carbon nanotubes", 
          "chemical vapor deposition", 
          "carbon nanotubes", 
          "semiconductor electronic devices", 
          "positive synergetic effect", 
          "photonic response", 
          "photocatalytic properties", 
          "electronic devices", 
          "graphene", 
          "vapor deposition", 
          "synergetic effect", 
          "potential applications", 
          "precursor material", 
          "titanium sheet", 
          "nanotubes", 
          "copper surface", 
          "benzene vapor", 
          "normal pressure", 
          "boiling point", 
          "fabrication", 
          "sheets", 
          "low temperature", 
          "cyclic reaction", 
          "Ti", 
          "time-dependent analysis", 
          "temperature", 
          "composites", 
          "devices", 
          "reaction mechanism", 
          "vapor", 
          "deposition", 
          "applications", 
          "surface", 
          "materials", 
          "properties", 
          "reaction", 
          "liquid benzene", 
          "pressure", 
          "mechanism", 
          "results", 
          "benzene", 
          "point", 
          "effect", 
          "analysis", 
          "mounds", 
          "islands", 
          "response", 
          "implications", 
          "size graphene", 
          "easy chemical cyclic reaction", 
          "chemical cyclic reaction", 
          "graphene precursor material", 
          "LSG sheet", 
          "MWCNTs/LSG"
        ], 
        "name": "Fabrication of large size graphene and Ti- MWCNTs/ large size graphene composites: their photocatalytic properties and potential application", 
        "pagination": "14242", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040658613"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep14242"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26384216"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep14242", 
          "https://app.dimensions.ai/details/publication/pub.1040658613"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_668.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/srep14242"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep14242'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep14242'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep14242'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep14242'


     

    This table displays all metadata directly associated to this object as RDF triples.

    187 TRIPLES      22 PREDICATES      97 URIs      73 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep14242 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nac3cf820540c48aea0e3819f90b14cd5
    4 schema:citation sg:pub.10.1038/nature07719
    5 sg:pub.10.1038/ncomms1702
    6 sg:pub.10.1038/nmat2166
    7 sg:pub.10.1038/nmat2378
    8 sg:pub.10.1038/nmat2382
    9 sg:pub.10.1038/nmat2392
    10 sg:pub.10.1038/nmat3245
    11 sg:pub.10.1038/nnano.2008.67
    12 sg:pub.10.1038/nnano.2010.192
    13 sg:pub.10.1038/nnano.2010.40
    14 sg:pub.10.1038/nnano.2013.46
    15 sg:pub.10.1038/nphys1991
    16 sg:pub.10.1038/srep01148
    17 sg:pub.10.1038/srep05494
    18 sg:pub.10.1038/srep05881
    19 sg:pub.10.1557/jmr.2009.0339
    20 schema:datePublished 2015-09-18
    21 schema:datePublishedReg 2015-09-18
    22 schema:description Large size graphene (LSG) and multiwall carbon nanotubes (MWCNTs) on LSG were synthesized on a copper surface via chemical vapor deposition (CVD) at low temperature and normal pressure. The LSG were formed through an easy chemical cyclic reaction in which liquid benzene was heated to a temperature below its boiling point to create benzene vapors as graphene precursor material. The reaction mechanism was observed, and the time-dependent analysis of the reaction revealed that mounds of the carbon nanotubes had grown as a result of the island that was found on the LSG sheet. The implications of the mechanism that we have introduced were investigated by coating a titanium sheet on the MWCNTs/LSG and LSG on the semiconductor electronic device. The photonic response was observed to be markedly high, which can be attributed to the positive synergetic effect between the Ti and LSG sheet of our prepared composites.
    23 schema:genre article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N06dcc80dd5554cb6b35208eb4baceb87
    27 N67364bd76fb74da9a0478f534d81052f
    28 sg:journal.1045337
    29 schema:keywords LSG sheet
    30 MWCNTs/LSG
    31 Ti
    32 analysis
    33 applications
    34 benzene
    35 benzene vapor
    36 boiling point
    37 carbon nanotubes
    38 chemical cyclic reaction
    39 chemical vapor deposition
    40 composites
    41 copper surface
    42 cyclic reaction
    43 deposition
    44 devices
    45 easy chemical cyclic reaction
    46 effect
    47 electronic devices
    48 fabrication
    49 graphene
    50 graphene precursor material
    51 implications
    52 islands
    53 large-size graphene
    54 liquid benzene
    55 low temperature
    56 materials
    57 mechanism
    58 mounds
    59 multiwall carbon nanotubes
    60 nanotubes
    61 normal pressure
    62 photocatalytic properties
    63 photonic response
    64 point
    65 positive synergetic effect
    66 potential applications
    67 precursor material
    68 pressure
    69 properties
    70 reaction
    71 reaction mechanism
    72 response
    73 results
    74 semiconductor electronic devices
    75 sheets
    76 size graphene
    77 surface
    78 synergetic effect
    79 temperature
    80 time-dependent analysis
    81 titanium sheet
    82 vapor
    83 vapor deposition
    84 schema:name Fabrication of large size graphene and Ti- MWCNTs/ large size graphene composites: their photocatalytic properties and potential application
    85 schema:pagination 14242
    86 schema:productId N3fdf96c4e98742cf936f0c61b2c44abe
    87 Na0e7f5a057384c7abbf5a2859210bf7b
    88 Nf393f71eaeb0483aa19b803f93330811
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040658613
    90 https://doi.org/10.1038/srep14242
    91 schema:sdDatePublished 2022-01-01T18:38
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher Na9cd411a2a7149779251712ef3c3ab16
    94 schema:url https://doi.org/10.1038/srep14242
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N06dcc80dd5554cb6b35208eb4baceb87 schema:volumeNumber 5
    99 rdf:type schema:PublicationVolume
    100 N3fdf96c4e98742cf936f0c61b2c44abe schema:name doi
    101 schema:value 10.1038/srep14242
    102 rdf:type schema:PropertyValue
    103 N67364bd76fb74da9a0478f534d81052f schema:issueNumber 1
    104 rdf:type schema:PublicationIssue
    105 Na0e7f5a057384c7abbf5a2859210bf7b schema:name dimensions_id
    106 schema:value pub.1040658613
    107 rdf:type schema:PropertyValue
    108 Na9cd411a2a7149779251712ef3c3ab16 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 Nac3cf820540c48aea0e3819f90b14cd5 rdf:first sg:person.011537023773.59
    111 rdf:rest Naf889b8c045b4558a8f0e3817e001f1b
    112 Naf889b8c045b4558a8f0e3817e001f1b rdf:first sg:person.015032760145.10
    113 rdf:rest rdf:nil
    114 Nf393f71eaeb0483aa19b803f93330811 schema:name pubmed_id
    115 schema:value 26384216
    116 rdf:type schema:PropertyValue
    117 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Engineering
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Materials Engineering
    122 rdf:type schema:DefinedTerm
    123 sg:journal.1045337 schema:issn 2045-2322
    124 schema:name Scientific Reports
    125 schema:publisher Springer Nature
    126 rdf:type schema:Periodical
    127 sg:person.011537023773.59 schema:affiliation grid-institutes:grid.411977.d
    128 schema:familyName Ullah
    129 schema:givenName Kefayat
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537023773.59
    131 rdf:type schema:Person
    132 sg:person.015032760145.10 schema:affiliation grid-institutes:grid.411977.d
    133 schema:familyName Oh
    134 schema:givenName Won-Chun
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015032760145.10
    136 rdf:type schema:Person
    137 sg:pub.10.1038/nature07719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010521124
    138 https://doi.org/10.1038/nature07719
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/ncomms1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036413274
    141 https://doi.org/10.1038/ncomms1702
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/nmat2166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036191349
    144 https://doi.org/10.1038/nmat2166
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/nmat2378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010106459
    147 https://doi.org/10.1038/nmat2378
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/nmat2382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032305837
    150 https://doi.org/10.1038/nmat2382
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/nmat2392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029967133
    153 https://doi.org/10.1038/nmat2392
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/nmat3245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042577727
    156 https://doi.org/10.1038/nmat3245
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nnano.2008.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024324186
    159 https://doi.org/10.1038/nnano.2008.67
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nnano.2010.192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018124713
    162 https://doi.org/10.1038/nnano.2010.192
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nnano.2010.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000716507
    165 https://doi.org/10.1038/nnano.2010.40
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/nnano.2013.46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015305822
    168 https://doi.org/10.1038/nnano.2013.46
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/nphys1991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040485592
    171 https://doi.org/10.1038/nphys1991
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/srep01148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019416406
    174 https://doi.org/10.1038/srep01148
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/srep05494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005345079
    177 https://doi.org/10.1038/srep05494
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/srep05881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039552016
    180 https://doi.org/10.1038/srep05881
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1557/jmr.2009.0339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008507321
    183 https://doi.org/10.1557/jmr.2009.0339
    184 rdf:type schema:CreativeWork
    185 grid-institutes:grid.411977.d schema:alternateName Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do, Korea, 356-706
    186 schema:name Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do, Korea, 356-706
    187 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...