Strain glass state as the boundary of two phase transitions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10

AUTHORS

Zhijian Zhou, Jian Cui, Xiaobing Ren

ABSTRACT

A strain glass state was found to be located between B2-B19' (cubic to monoclinic) phase transition and B2-R (cubic to rhombohedral) phase transition in Ti49Ni51 alloys after aging process. After a short time aging, strong strain glass transition was observed, because the size of the precipitates is small, which means the strain field induced by the precipitates is isotropic and point-defect-like, and the distribution of the precipitates is random. After a long time aging, the average size of the precipitates increases. The strong strain field induced by the precipitates around them forces the symmetry of the matrix materials to conform to the symmetry of the crystalline structure of the precipitates, which results in the new phase transition. The experiment shows that there exists no well-defined boundary in the evolution from the strain glass transition to the new phase transition. Due to its generality, this glass mediated phase transition divergence scheme can be applied to other proper material systems to induce a more important new phase transition path, which can be useful in the field of phase transition engineering. More... »

PAGES

13377

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep13377

DOI

http://dx.doi.org/10.1038/srep13377

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013301977

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26307500


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "Multi-Disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi\u2019an Jiaotong University, 710054 Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Zhijian", 
        "id": "sg:person.014212616401.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014212616401.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "Multi-Disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi\u2019an Jiaotong University, 710054 Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Jian", 
        "id": "sg:person.01000631574.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000631574.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "Multi-Disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi\u2019an Jiaotong University, 710054 Xi\u2019an, China", 
            "Ferroic Physics Group, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Xiaobing", 
        "id": "sg:person.0726461506.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726461506.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.4893003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001499844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.07.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006549839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2004.10.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009955050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786430903074771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010474298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011674035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108768106036457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019382804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans1960.27.731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019547639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2004.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019575214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intermet.2010.02.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025688743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031662228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031662228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1468-6996/14/1/014206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033176899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2003.11.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035509043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2004.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040455268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans1989.33.271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042456659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1151-2916.1925.tb16731.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043935090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2007.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045253115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047223327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans1989.36.1244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052387864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.224102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.224102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.214201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.214201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.104110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.104110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.205702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.205702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.205702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1183169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461319"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "A strain glass state was found to be located between B2-B19' (cubic to monoclinic) phase transition and B2-R (cubic to rhombohedral) phase transition in Ti49Ni51 alloys after aging process. After a short time aging, strong strain glass transition was observed, because the size of the precipitates is small, which means the strain field induced by the precipitates is isotropic and point-defect-like, and the distribution of the precipitates is random. After a long time aging, the average size of the precipitates increases. The strong strain field induced by the precipitates around them forces the symmetry of the matrix materials to conform to the symmetry of the crystalline structure of the precipitates, which results in the new phase transition. The experiment shows that there exists no well-defined boundary in the evolution from the strain glass transition to the new phase transition. Due to its generality, this glass mediated phase transition divergence scheme can be applied to other proper material systems to induce a more important new phase transition path, which can be useful in the field of phase transition engineering. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep13377", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6137932", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Strain glass state as the boundary of two phase transitions", 
    "pagination": "13377", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3f5e49b09b9cff04c7e30599fd53c99f0ea5981e9f590a23b7a2bc8a28dc2aff"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26307500"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep13377"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013301977"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep13377", 
      "https://app.dimensions.ai/details/publication/pub.1013301977"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/150826/srep13377/full/srep13377.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep13377'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep13377'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep13377'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep13377'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep13377 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nca676e4660da48eca271f550b6700a0c
4 schema:citation https://doi.org/10.1016/j.actamat.2004.06.002
5 https://doi.org/10.1016/j.actamat.2004.10.049
6 https://doi.org/10.1016/j.actamat.2005.06.009
7 https://doi.org/10.1016/j.actamat.2005.08.013
8 https://doi.org/10.1016/j.actamat.2007.10.020
9 https://doi.org/10.1016/j.actamat.2010.06.019
10 https://doi.org/10.1016/j.actamat.2010.07.040
11 https://doi.org/10.1016/j.intermet.2010.02.048
12 https://doi.org/10.1016/j.msea.2003.11.062
13 https://doi.org/10.1016/j.pmatsci.2004.10.001
14 https://doi.org/10.1063/1.4893003
15 https://doi.org/10.1080/14786430903074771
16 https://doi.org/10.1088/1468-6996/14/1/014206
17 https://doi.org/10.1103/physrevb.81.224102
18 https://doi.org/10.1103/physrevb.84.214201
19 https://doi.org/10.1103/physrevb.87.104110
20 https://doi.org/10.1103/physrevlett.95.205702
21 https://doi.org/10.1107/s0108768106036457
22 https://doi.org/10.1111/j.1151-2916.1925.tb16731.x
23 https://doi.org/10.1126/science.1183169
24 https://doi.org/10.2320/matertrans1960.27.731
25 https://doi.org/10.2320/matertrans1989.33.271
26 https://doi.org/10.2320/matertrans1989.36.1244
27 schema:datePublished 2015-10
28 schema:datePublishedReg 2015-10-01
29 schema:description A strain glass state was found to be located between B2-B19' (cubic to monoclinic) phase transition and B2-R (cubic to rhombohedral) phase transition in Ti49Ni51 alloys after aging process. After a short time aging, strong strain glass transition was observed, because the size of the precipitates is small, which means the strain field induced by the precipitates is isotropic and point-defect-like, and the distribution of the precipitates is random. After a long time aging, the average size of the precipitates increases. The strong strain field induced by the precipitates around them forces the symmetry of the matrix materials to conform to the symmetry of the crystalline structure of the precipitates, which results in the new phase transition. The experiment shows that there exists no well-defined boundary in the evolution from the strain glass transition to the new phase transition. Due to its generality, this glass mediated phase transition divergence scheme can be applied to other proper material systems to induce a more important new phase transition path, which can be useful in the field of phase transition engineering.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N4f66c52c5493487d8c9592179ea356a4
34 Nd32d7b5fd0a245a9b392acf7990421b1
35 sg:journal.1045337
36 schema:name Strain glass state as the boundary of two phase transitions
37 schema:pagination 13377
38 schema:productId N0e8611374b184159ad79d50699ee0300
39 N215de297f43942a98f3911c54155c901
40 N4572de4076c94a05936fac5346df97e9
41 N7100631eb42640c7a7c48704a0f24ba4
42 Nab4c8dcfbb7e4da4922a6ce1353ed13c
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013301977
44 https://doi.org/10.1038/srep13377
45 schema:sdDatePublished 2019-04-10T21:24
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N5b2e299fbde54bf5854df299ed21aa03
48 schema:url http://www.nature.com/srep/2015/150826/srep13377/full/srep13377.html
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0e8611374b184159ad79d50699ee0300 schema:name nlm_unique_id
53 schema:value 101563288
54 rdf:type schema:PropertyValue
55 N215de297f43942a98f3911c54155c901 schema:name readcube_id
56 schema:value 3f5e49b09b9cff04c7e30599fd53c99f0ea5981e9f590a23b7a2bc8a28dc2aff
57 rdf:type schema:PropertyValue
58 N4572de4076c94a05936fac5346df97e9 schema:name doi
59 schema:value 10.1038/srep13377
60 rdf:type schema:PropertyValue
61 N4f66c52c5493487d8c9592179ea356a4 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N5b2e299fbde54bf5854df299ed21aa03 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N7100631eb42640c7a7c48704a0f24ba4 schema:name pubmed_id
66 schema:value 26307500
67 rdf:type schema:PropertyValue
68 Nab4c8dcfbb7e4da4922a6ce1353ed13c schema:name dimensions_id
69 schema:value pub.1013301977
70 rdf:type schema:PropertyValue
71 Nca676e4660da48eca271f550b6700a0c rdf:first sg:person.014212616401.00
72 rdf:rest Nf6c8524c23454a2a8c6dd0fd09f00b12
73 Nd141422d473a47bf8a32705aae73aab8 rdf:first sg:person.0726461506.16
74 rdf:rest rdf:nil
75 Nd32d7b5fd0a245a9b392acf7990421b1 schema:volumeNumber 5
76 rdf:type schema:PublicationVolume
77 Nf6c8524c23454a2a8c6dd0fd09f00b12 rdf:first sg:person.01000631574.98
78 rdf:rest Nd141422d473a47bf8a32705aae73aab8
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
83 schema:name Materials Engineering
84 rdf:type schema:DefinedTerm
85 sg:grant.6137932 http://pending.schema.org/fundedItem sg:pub.10.1038/srep13377
86 rdf:type schema:MonetaryGrant
87 sg:journal.1045337 schema:issn 2045-2322
88 schema:name Scientific Reports
89 rdf:type schema:Periodical
90 sg:person.01000631574.98 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
91 schema:familyName Cui
92 schema:givenName Jian
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000631574.98
94 rdf:type schema:Person
95 sg:person.014212616401.00 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
96 schema:familyName Zhou
97 schema:givenName Zhijian
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014212616401.00
99 rdf:type schema:Person
100 sg:person.0726461506.16 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
101 schema:familyName Ren
102 schema:givenName Xiaobing
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726461506.16
104 rdf:type schema:Person
105 https://doi.org/10.1016/j.actamat.2004.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040455268
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.actamat.2004.10.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009955050
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.actamat.2005.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031662228
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.actamat.2005.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047223327
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.actamat.2007.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045253115
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.actamat.2010.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011674035
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.actamat.2010.07.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006549839
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.intermet.2010.02.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025688743
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.msea.2003.11.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035509043
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.pmatsci.2004.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019575214
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.4893003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001499844
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/14786430903074771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010474298
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1088/1468-6996/14/1/014206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033176899
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevb.81.224102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632818
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.84.214201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060637587
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevb.87.104110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641048
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.95.205702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831177
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1107/s0108768106036457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019382804
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1111/j.1151-2916.1925.tb16731.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043935090
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1126/science.1183169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461319
144 rdf:type schema:CreativeWork
145 https://doi.org/10.2320/matertrans1960.27.731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019547639
146 rdf:type schema:CreativeWork
147 https://doi.org/10.2320/matertrans1989.33.271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042456659
148 rdf:type schema:CreativeWork
149 https://doi.org/10.2320/matertrans1989.36.1244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052387864
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
152 schema:name Ferroic Physics Group, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
153 Multi-Disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi’an Jiaotong University, 710054 Xi’an, China
154 rdf:type schema:Organization
155 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
156 schema:name Multi-Disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi’an Jiaotong University, 710054 Xi’an, China
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...