Thickness controlled proximity effects in C-type antiferromagnet/superconductor heterostructure View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10

AUTHORS

Awadhesh Mani, T. Geetha Kumary, J. G. Lin

ABSTRACT

Modulation of the superconducting state possessing a C-type antiferromagnetic phase in the Nd0.35Sr0.65MnO3/YBa2Cu3O7 heterostructure is investigated, with the Nd0.35Sr0.65MnO3 thickness (t) varying from 40 to 200 nm. Both the superconducting transition temperature and the upper critical field along the c-axis decrease with increasing t; while the in-plane coherence length increases from 2.0 up to 3.6 nm. Meanwhile, the critical current density exhibits a field-independent behavior, indicating an enhanced flux pinning effect. Furthermore, low-temperature spin canting induces a breakdown and re-entrance of the superconductivity, demonstrating a dynamic completion between the superconducting pairing and the exchange field. An unexpected colossal magnetoresistance is observed below the superconducting re-entrance temperature at t = 200 nm, which is attributed to the dominant influence of the exchange field over the pairing energy. More... »

PAGES

12780

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep12780

DOI

http://dx.doi.org/10.1038/srep12780

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038638114

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26239479


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indira Gandhi Centre for Atomic Research", 
          "id": "https://www.grid.ac/institutes/grid.459621.d", 
          "name": [
            "Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan", 
            "Condensed Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mani", 
        "givenName": "Awadhesh", 
        "id": "sg:person.0644033155.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644033155.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indira Gandhi Centre for Atomic Research", 
          "id": "https://www.grid.ac/institutes/grid.459621.d", 
          "name": [
            "Condensed Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumary", 
        "givenName": "T. Geetha", 
        "id": "sg:person.015513444120.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513444120.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Taiwan University", 
          "id": "https://www.grid.ac/institutes/grid.19188.39", 
          "name": [
            "Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "J. G.", 
        "id": "sg:person.01327555331.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327555331.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.60.9506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005025825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.9506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005025825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.144517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014823068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.144517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014823068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024794148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(00)00121-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029733567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00683770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031909891", 
          "https://doi.org/10.1007/bf00683770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00683770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031909891", 
          "https://doi.org/10.1007/bf00683770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034530767", 
          "https://doi.org/10.1038/nphys2318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035439892", 
          "https://doi.org/10.1038/nmat1222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035439892", 
          "https://doi.org/10.1038/nmat1222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037763084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037763084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2005.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042228277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.1321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043106298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.1321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043106298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2004.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049708444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3087000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051158815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3352575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057940211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.147.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.147.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.8956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.8956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.104513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.104513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.227003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.227003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.227003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.264.5157.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062548008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5394.1660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563354"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "Modulation of the superconducting state possessing a C-type antiferromagnetic phase in the Nd0.35Sr0.65MnO3/YBa2Cu3O7 heterostructure is investigated, with the Nd0.35Sr0.65MnO3 thickness (t) varying from 40 to 200 nm. Both the superconducting transition temperature and the upper critical field along the c-axis decrease with increasing t; while the in-plane coherence length increases from 2.0 up to 3.6 nm. Meanwhile, the critical current density exhibits a field-independent behavior, indicating an enhanced flux pinning effect. Furthermore, low-temperature spin canting induces a breakdown and re-entrance of the superconductivity, demonstrating a dynamic completion between the superconducting pairing and the exchange field. An unexpected colossal magnetoresistance is observed below the superconducting re-entrance temperature at t = 200 nm, which is attributed to the dominant influence of the exchange field over the pairing energy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep12780", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Thickness controlled proximity effects in C-type antiferromagnet/superconductor heterostructure", 
    "pagination": "12780", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b80de0f42a5a1b80076ed2abbf9e8e9e9ccf9fb9f023a9bc610d1db9a3a75f08"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26239479"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep12780"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038638114"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep12780", 
      "https://app.dimensions.ai/details/publication/pub.1038638114"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/150804/srep12780/full/srep12780.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep12780'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep12780'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep12780'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep12780'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep12780 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N39deb4956cfb4f76bab1062ed979015d
4 schema:citation sg:pub.10.1007/bf00683770
5 sg:pub.10.1038/nmat1222
6 sg:pub.10.1038/nphys2318
7 https://doi.org/10.1016/j.physc.2004.08.005
8 https://doi.org/10.1016/j.physc.2005.12.030
9 https://doi.org/10.1016/s0370-1573(00)00121-6
10 https://doi.org/10.1063/1.3087000
11 https://doi.org/10.1063/1.3352575
12 https://doi.org/10.1103/physrev.147.295
13 https://doi.org/10.1103/physrevb.59.8956
14 https://doi.org/10.1103/physrevb.60.9506
15 https://doi.org/10.1103/physrevb.70.144517
16 https://doi.org/10.1103/physrevb.73.104513
17 https://doi.org/10.1103/physrevlett.58.908
18 https://doi.org/10.1103/physrevlett.95.227003
19 https://doi.org/10.1103/revmodphys.77.1321
20 https://doi.org/10.1103/revmodphys.77.935
21 https://doi.org/10.1126/science.1065389
22 https://doi.org/10.1126/science.264.5157.413
23 https://doi.org/10.1126/science.282.5394.1660
24 schema:datePublished 2015-10
25 schema:datePublishedReg 2015-10-01
26 schema:description Modulation of the superconducting state possessing a C-type antiferromagnetic phase in the Nd0.35Sr0.65MnO3/YBa2Cu3O7 heterostructure is investigated, with the Nd0.35Sr0.65MnO3 thickness (t) varying from 40 to 200 nm. Both the superconducting transition temperature and the upper critical field along the c-axis decrease with increasing t; while the in-plane coherence length increases from 2.0 up to 3.6 nm. Meanwhile, the critical current density exhibits a field-independent behavior, indicating an enhanced flux pinning effect. Furthermore, low-temperature spin canting induces a breakdown and re-entrance of the superconductivity, demonstrating a dynamic completion between the superconducting pairing and the exchange field. An unexpected colossal magnetoresistance is observed below the superconducting re-entrance temperature at t = 200 nm, which is attributed to the dominant influence of the exchange field over the pairing energy.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf Na2ee2a62c4a34b8194b4191388497e0e
31 Nbd94ab28e4cb4378a9f21fc1f2a8bfe6
32 sg:journal.1045337
33 schema:name Thickness controlled proximity effects in C-type antiferromagnet/superconductor heterostructure
34 schema:pagination 12780
35 schema:productId N4597c44e78a446a29904fb4c67719c1c
36 Naee9c83a9fc346adbbfdab45095a0802
37 Nbe4d3dcb82984429bf70a0d8c7308144
38 Nee604aabbbef4f27b0eaf4ebf0fee8ad
39 Nfe00f989419e484a90d31cd0831f2ed4
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038638114
41 https://doi.org/10.1038/srep12780
42 schema:sdDatePublished 2019-04-10T13:56
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Ncc1fc3e5fe0941d89d530a5bb6b559fd
45 schema:url http://www.nature.com/srep/2015/150804/srep12780/full/srep12780.html
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N31df505f39594b3b856c0cdf2930a5e6 rdf:first sg:person.01327555331.25
50 rdf:rest rdf:nil
51 N39deb4956cfb4f76bab1062ed979015d rdf:first sg:person.0644033155.73
52 rdf:rest N9841bff3bf7d4cf9b672c37859269d1b
53 N4597c44e78a446a29904fb4c67719c1c schema:name nlm_unique_id
54 schema:value 101563288
55 rdf:type schema:PropertyValue
56 N9841bff3bf7d4cf9b672c37859269d1b rdf:first sg:person.015513444120.08
57 rdf:rest N31df505f39594b3b856c0cdf2930a5e6
58 Na2ee2a62c4a34b8194b4191388497e0e schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 Naee9c83a9fc346adbbfdab45095a0802 schema:name readcube_id
61 schema:value b80de0f42a5a1b80076ed2abbf9e8e9e9ccf9fb9f023a9bc610d1db9a3a75f08
62 rdf:type schema:PropertyValue
63 Nbd94ab28e4cb4378a9f21fc1f2a8bfe6 schema:volumeNumber 5
64 rdf:type schema:PublicationVolume
65 Nbe4d3dcb82984429bf70a0d8c7308144 schema:name dimensions_id
66 schema:value pub.1038638114
67 rdf:type schema:PropertyValue
68 Ncc1fc3e5fe0941d89d530a5bb6b559fd schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nee604aabbbef4f27b0eaf4ebf0fee8ad schema:name doi
71 schema:value 10.1038/srep12780
72 rdf:type schema:PropertyValue
73 Nfe00f989419e484a90d31cd0831f2ed4 schema:name pubmed_id
74 schema:value 26239479
75 rdf:type schema:PropertyValue
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
80 schema:name Materials Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1045337 schema:issn 2045-2322
83 schema:name Scientific Reports
84 rdf:type schema:Periodical
85 sg:person.01327555331.25 schema:affiliation https://www.grid.ac/institutes/grid.19188.39
86 schema:familyName Lin
87 schema:givenName J. G.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327555331.25
89 rdf:type schema:Person
90 sg:person.015513444120.08 schema:affiliation https://www.grid.ac/institutes/grid.459621.d
91 schema:familyName Kumary
92 schema:givenName T. Geetha
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513444120.08
94 rdf:type schema:Person
95 sg:person.0644033155.73 schema:affiliation https://www.grid.ac/institutes/grid.459621.d
96 schema:familyName Mani
97 schema:givenName Awadhesh
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644033155.73
99 rdf:type schema:Person
100 sg:pub.10.1007/bf00683770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031909891
101 https://doi.org/10.1007/bf00683770
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/nmat1222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035439892
104 https://doi.org/10.1038/nmat1222
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/nphys2318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034530767
107 https://doi.org/10.1038/nphys2318
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.physc.2004.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049708444
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.physc.2005.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042228277
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0370-1573(00)00121-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029733567
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.3087000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051158815
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.3352575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057940211
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrev.147.295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433136
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevb.59.8956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592157
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.60.9506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005025825
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.70.144517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014823068
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevb.73.104513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060616880
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.58.908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795429
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.95.227003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831273
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/revmodphys.77.1321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043106298
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/revmodphys.77.935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037763084
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1126/science.1065389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024794148
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.264.5157.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062548008
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1126/science.282.5394.1660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563354
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.19188.39 schema:alternateName National Taiwan University
144 schema:name Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.459621.d schema:alternateName Indira Gandhi Centre for Atomic Research
147 schema:name Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan
148 Condensed Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...