Thickness controlled proximity effects in C-type antiferromagnet/superconductor heterostructure View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10

AUTHORS

Awadhesh Mani, T. Geetha Kumary, J. G. Lin

ABSTRACT

Modulation of the superconducting state possessing a C-type antiferromagnetic phase in the Nd0.35Sr0.65MnO3/YBa2Cu3O7 heterostructure is investigated, with the Nd0.35Sr0.65MnO3 thickness (t) varying from 40 to 200 nm. Both the superconducting transition temperature and the upper critical field along the c-axis decrease with increasing t; while the in-plane coherence length increases from 2.0 up to 3.6 nm. Meanwhile, the critical current density exhibits a field-independent behavior, indicating an enhanced flux pinning effect. Furthermore, low-temperature spin canting induces a breakdown and re-entrance of the superconductivity, demonstrating a dynamic completion between the superconducting pairing and the exchange field. An unexpected colossal magnetoresistance is observed below the superconducting re-entrance temperature at t = 200 nm, which is attributed to the dominant influence of the exchange field over the pairing energy. More... »

PAGES

12780

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep12780

DOI

http://dx.doi.org/10.1038/srep12780

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038638114

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26239479


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indira Gandhi Centre for Atomic Research", 
          "id": "https://www.grid.ac/institutes/grid.459621.d", 
          "name": [
            "Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan", 
            "Condensed Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mani", 
        "givenName": "Awadhesh", 
        "id": "sg:person.0644033155.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644033155.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indira Gandhi Centre for Atomic Research", 
          "id": "https://www.grid.ac/institutes/grid.459621.d", 
          "name": [
            "Condensed Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumary", 
        "givenName": "T. Geetha", 
        "id": "sg:person.015513444120.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513444120.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Taiwan University", 
          "id": "https://www.grid.ac/institutes/grid.19188.39", 
          "name": [
            "Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "J. G.", 
        "id": "sg:person.01327555331.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327555331.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.60.9506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005025825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.9506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005025825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.144517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014823068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.144517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014823068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024794148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(00)00121-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029733567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00683770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031909891", 
          "https://doi.org/10.1007/bf00683770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00683770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031909891", 
          "https://doi.org/10.1007/bf00683770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034530767", 
          "https://doi.org/10.1038/nphys2318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035439892", 
          "https://doi.org/10.1038/nmat1222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035439892", 
          "https://doi.org/10.1038/nmat1222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037763084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037763084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2005.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042228277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.1321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043106298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.1321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043106298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2004.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049708444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3087000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051158815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3352575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057940211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.147.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.147.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.8956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.8956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.104513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.104513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.227003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.227003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.227003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.264.5157.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062548008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5394.1660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563354"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "Modulation of the superconducting state possessing a C-type antiferromagnetic phase in the Nd0.35Sr0.65MnO3/YBa2Cu3O7 heterostructure is investigated, with the Nd0.35Sr0.65MnO3 thickness (t) varying from 40 to 200 nm. Both the superconducting transition temperature and the upper critical field along the c-axis decrease with increasing t; while the in-plane coherence length increases from 2.0 up to 3.6 nm. Meanwhile, the critical current density exhibits a field-independent behavior, indicating an enhanced flux pinning effect. Furthermore, low-temperature spin canting induces a breakdown and re-entrance of the superconductivity, demonstrating a dynamic completion between the superconducting pairing and the exchange field. An unexpected colossal magnetoresistance is observed below the superconducting re-entrance temperature at t = 200 nm, which is attributed to the dominant influence of the exchange field over the pairing energy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep12780", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Thickness controlled proximity effects in C-type antiferromagnet/superconductor heterostructure", 
    "pagination": "12780", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b80de0f42a5a1b80076ed2abbf9e8e9e9ccf9fb9f023a9bc610d1db9a3a75f08"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26239479"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep12780"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038638114"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep12780", 
      "https://app.dimensions.ai/details/publication/pub.1038638114"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/150804/srep12780/full/srep12780.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep12780'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep12780'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep12780'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep12780'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep12780 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N24bc03312acc46989f0e204e14ce48c9
4 schema:citation sg:pub.10.1007/bf00683770
5 sg:pub.10.1038/nmat1222
6 sg:pub.10.1038/nphys2318
7 https://doi.org/10.1016/j.physc.2004.08.005
8 https://doi.org/10.1016/j.physc.2005.12.030
9 https://doi.org/10.1016/s0370-1573(00)00121-6
10 https://doi.org/10.1063/1.3087000
11 https://doi.org/10.1063/1.3352575
12 https://doi.org/10.1103/physrev.147.295
13 https://doi.org/10.1103/physrevb.59.8956
14 https://doi.org/10.1103/physrevb.60.9506
15 https://doi.org/10.1103/physrevb.70.144517
16 https://doi.org/10.1103/physrevb.73.104513
17 https://doi.org/10.1103/physrevlett.58.908
18 https://doi.org/10.1103/physrevlett.95.227003
19 https://doi.org/10.1103/revmodphys.77.1321
20 https://doi.org/10.1103/revmodphys.77.935
21 https://doi.org/10.1126/science.1065389
22 https://doi.org/10.1126/science.264.5157.413
23 https://doi.org/10.1126/science.282.5394.1660
24 schema:datePublished 2015-10
25 schema:datePublishedReg 2015-10-01
26 schema:description Modulation of the superconducting state possessing a C-type antiferromagnetic phase in the Nd0.35Sr0.65MnO3/YBa2Cu3O7 heterostructure is investigated, with the Nd0.35Sr0.65MnO3 thickness (t) varying from 40 to 200 nm. Both the superconducting transition temperature and the upper critical field along the c-axis decrease with increasing t; while the in-plane coherence length increases from 2.0 up to 3.6 nm. Meanwhile, the critical current density exhibits a field-independent behavior, indicating an enhanced flux pinning effect. Furthermore, low-temperature spin canting induces a breakdown and re-entrance of the superconductivity, demonstrating a dynamic completion between the superconducting pairing and the exchange field. An unexpected colossal magnetoresistance is observed below the superconducting re-entrance temperature at t = 200 nm, which is attributed to the dominant influence of the exchange field over the pairing energy.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N0766276668414e6fb654906cd3b4f7d6
31 N6af21a0ec06247128e095cc7e09f0143
32 sg:journal.1045337
33 schema:name Thickness controlled proximity effects in C-type antiferromagnet/superconductor heterostructure
34 schema:pagination 12780
35 schema:productId N2897afa3679448a587b4dace6f802c51
36 N30592f08432c4944b336fbe5502b0125
37 N95d652c0bbfa4da5a168945ed5734a4a
38 Nb5460dde89da4b5a8d14505ba80676f3
39 Nc3eaec67f6374013b281765e9ad2a341
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038638114
41 https://doi.org/10.1038/srep12780
42 schema:sdDatePublished 2019-04-10T13:56
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N29cd5101bbd346549193062b3d756806
45 schema:url http://www.nature.com/srep/2015/150804/srep12780/full/srep12780.html
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0766276668414e6fb654906cd3b4f7d6 schema:issueNumber 1
50 rdf:type schema:PublicationIssue
51 N24bc03312acc46989f0e204e14ce48c9 rdf:first sg:person.0644033155.73
52 rdf:rest N75cd64c37740477b950d04a9d58af35d
53 N2897afa3679448a587b4dace6f802c51 schema:name dimensions_id
54 schema:value pub.1038638114
55 rdf:type schema:PropertyValue
56 N29cd5101bbd346549193062b3d756806 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N30592f08432c4944b336fbe5502b0125 schema:name readcube_id
59 schema:value b80de0f42a5a1b80076ed2abbf9e8e9e9ccf9fb9f023a9bc610d1db9a3a75f08
60 rdf:type schema:PropertyValue
61 N58ac381d772142bbaf15b89cde94665a rdf:first sg:person.01327555331.25
62 rdf:rest rdf:nil
63 N6af21a0ec06247128e095cc7e09f0143 schema:volumeNumber 5
64 rdf:type schema:PublicationVolume
65 N75cd64c37740477b950d04a9d58af35d rdf:first sg:person.015513444120.08
66 rdf:rest N58ac381d772142bbaf15b89cde94665a
67 N95d652c0bbfa4da5a168945ed5734a4a schema:name doi
68 schema:value 10.1038/srep12780
69 rdf:type schema:PropertyValue
70 Nb5460dde89da4b5a8d14505ba80676f3 schema:name pubmed_id
71 schema:value 26239479
72 rdf:type schema:PropertyValue
73 Nc3eaec67f6374013b281765e9ad2a341 schema:name nlm_unique_id
74 schema:value 101563288
75 rdf:type schema:PropertyValue
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
80 schema:name Materials Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1045337 schema:issn 2045-2322
83 schema:name Scientific Reports
84 rdf:type schema:Periodical
85 sg:person.01327555331.25 schema:affiliation https://www.grid.ac/institutes/grid.19188.39
86 schema:familyName Lin
87 schema:givenName J. G.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327555331.25
89 rdf:type schema:Person
90 sg:person.015513444120.08 schema:affiliation https://www.grid.ac/institutes/grid.459621.d
91 schema:familyName Kumary
92 schema:givenName T. Geetha
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513444120.08
94 rdf:type schema:Person
95 sg:person.0644033155.73 schema:affiliation https://www.grid.ac/institutes/grid.459621.d
96 schema:familyName Mani
97 schema:givenName Awadhesh
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644033155.73
99 rdf:type schema:Person
100 sg:pub.10.1007/bf00683770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031909891
101 https://doi.org/10.1007/bf00683770
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/nmat1222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035439892
104 https://doi.org/10.1038/nmat1222
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/nphys2318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034530767
107 https://doi.org/10.1038/nphys2318
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.physc.2004.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049708444
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.physc.2005.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042228277
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0370-1573(00)00121-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029733567
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.3087000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051158815
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.3352575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057940211
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrev.147.295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433136
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevb.59.8956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592157
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.60.9506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005025825
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.70.144517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014823068
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevb.73.104513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060616880
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.58.908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795429
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.95.227003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831273
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/revmodphys.77.1321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043106298
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/revmodphys.77.935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037763084
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1126/science.1065389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024794148
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.264.5157.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062548008
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1126/science.282.5394.1660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563354
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.19188.39 schema:alternateName National Taiwan University
144 schema:name Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.459621.d schema:alternateName Indira Gandhi Centre for Atomic Research
147 schema:name Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan
148 Condensed Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...