Greatly Enhancing Catalytic Activity of Graphene by Doping the Underlying Metal Substrate View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Na Guo, Yongjie Xi, Shuanglong Liu, Chun Zhang

ABSTRACT

Graphene-based solid-state catalysis represents a new direction in applications of graphene and has attracted a lot of interests recently. However, the difficulty in fine control and large-scale production of previously proposed graphene catalysts greatly limits their industrial applications. Here we present a novel way to enhance the catalytic activity of graphene, which is highly efficient yet easy to fabricate and control. By first-principles calculations, we show that when the underlying metal substrate is doped with impurities, the catalytic activity of the supported graphene can be drastically enhanced. Graphene supported on a Fe/Ni(111) surface is chosen as a model catalyst, and the chemical reaction of CO oxidation is used to probe the catalytic activity of graphene. When the underlying Fe/Ni(111) substrate is impurity free, the graphene is catalytically inactive. When a Zn atom is doped into the substrate, the catalytic activity of the supported graphene is greatly enhanced, and the reaction barrier of the catalyzed CO oxidation is reduced to less than 0.5 eV. Intriguing reaction mechanism of catalyzed CO oxidation is revealed. These studies suggest a new class of graphene-based catalysts and pave the way for future applications of graphene in solid-state catalysis. More... »

PAGES

12058

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep12058

DOI

http://dx.doi.org/10.1038/srep12058

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024861578

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26156332


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Physics and Graphene Research Centre, National University of Singapore, Singapore 117542"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Na", 
        "id": "sg:person.01113537071.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113537071.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Physics and Graphene Research Centre, National University of Singapore, Singapore 117542", 
            "Department of Chemistry, National University of Singapore, Singapore 117542."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xi", 
        "givenName": "Yongjie", 
        "id": "sg:person.01274052341.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274052341.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Physics and Graphene Research Centre, National University of Singapore, Singapore 117542"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Shuanglong", 
        "id": "sg:person.0766177304.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766177304.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Physics and Graphene Research Centre, National University of Singapore, Singapore 117542", 
            "Department of Chemistry, National University of Singapore, Singapore 117542."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Chun", 
        "id": "sg:person.01072225733.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072225733.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1cy00361e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001419367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn302674k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010578957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn901850u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011755964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1416368111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018148356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201200413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024197592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/22/38/385502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030312603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz200043p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037356191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz200043p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037356191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/7/073050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041726579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/7/073050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041726579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja102398n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055847257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja102398n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055847257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp105368j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056077894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp105368j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056077894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp210667f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056086679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp3053218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056090067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp908829m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056118042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp908829m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056118042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn302984x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056224629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1329672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057695436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3427246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057950095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.205101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.205101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.165410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.165410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.157601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.157601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "Graphene-based solid-state catalysis represents a new direction in applications of graphene and has attracted a lot of interests recently. However, the difficulty in fine control and large-scale production of previously proposed graphene catalysts greatly limits their industrial applications. Here we present a novel way to enhance the catalytic activity of graphene, which is highly efficient yet easy to fabricate and control. By first-principles calculations, we show that when the underlying metal substrate is doped with impurities, the catalytic activity of the supported graphene can be drastically enhanced. Graphene supported on a Fe/Ni(111) surface is chosen as a model catalyst, and the chemical reaction of CO oxidation is used to probe the catalytic activity of graphene. When the underlying Fe/Ni(111) substrate is impurity free, the graphene is catalytically inactive. When a Zn atom is doped into the substrate, the catalytic activity of the supported graphene is greatly enhanced, and the reaction barrier of the catalyzed CO oxidation is reduced to less than 0.5\u2009eV. Intriguing reaction mechanism of catalyzed CO oxidation is revealed. These studies suggest a new class of graphene-based catalysts and pave the way for future applications of graphene in solid-state catalysis. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep12058", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Greatly Enhancing Catalytic Activity of Graphene by Doping the Underlying Metal Substrate", 
    "pagination": "12058", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "767107c430ae7d06ffd918ec4d2dbe94c313db99d95167fd337856d0b2228fb8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26156332"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep12058"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024861578"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep12058", 
      "https://app.dimensions.ai/details/publication/pub.1024861578"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/srep12058"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep12058'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep12058'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep12058'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep12058'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep12058 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Na004f9cb9ea64d91b59890b249549489
4 schema:citation sg:pub.10.1038/nature04233
5 sg:pub.10.1038/nature04235
6 https://doi.org/10.1002/anie.201200413
7 https://doi.org/10.1021/ja102398n
8 https://doi.org/10.1021/jp105368j
9 https://doi.org/10.1021/jp210667f
10 https://doi.org/10.1021/jp3053218
11 https://doi.org/10.1021/jp908829m
12 https://doi.org/10.1021/jz200043p
13 https://doi.org/10.1021/nn302674k
14 https://doi.org/10.1021/nn302984x
15 https://doi.org/10.1021/nn901850u
16 https://doi.org/10.1039/c1cy00361e
17 https://doi.org/10.1063/1.1329672
18 https://doi.org/10.1063/1.3427246
19 https://doi.org/10.1073/pnas.1416368111
20 https://doi.org/10.1088/0957-4484/22/38/385502
21 https://doi.org/10.1088/1367-2630/11/7/073050
22 https://doi.org/10.1103/physrevb.47.558
23 https://doi.org/10.1103/physrevb.50.17953
24 https://doi.org/10.1103/physrevb.54.11169
25 https://doi.org/10.1103/physrevb.73.205101
26 https://doi.org/10.1103/physrevb.88.165410
27 https://doi.org/10.1103/physrevlett.101.157601
28 https://doi.org/10.1103/physrevlett.77.3865
29 https://doi.org/10.1103/revmodphys.81.109
30 https://doi.org/10.1126/science.1102896
31 schema:datePublished 2015-12
32 schema:datePublishedReg 2015-12-01
33 schema:description Graphene-based solid-state catalysis represents a new direction in applications of graphene and has attracted a lot of interests recently. However, the difficulty in fine control and large-scale production of previously proposed graphene catalysts greatly limits their industrial applications. Here we present a novel way to enhance the catalytic activity of graphene, which is highly efficient yet easy to fabricate and control. By first-principles calculations, we show that when the underlying metal substrate is doped with impurities, the catalytic activity of the supported graphene can be drastically enhanced. Graphene supported on a Fe/Ni(111) surface is chosen as a model catalyst, and the chemical reaction of CO oxidation is used to probe the catalytic activity of graphene. When the underlying Fe/Ni(111) substrate is impurity free, the graphene is catalytically inactive. When a Zn atom is doped into the substrate, the catalytic activity of the supported graphene is greatly enhanced, and the reaction barrier of the catalyzed CO oxidation is reduced to less than 0.5‚ÄČeV. Intriguing reaction mechanism of catalyzed CO oxidation is revealed. These studies suggest a new class of graphene-based catalysts and pave the way for future applications of graphene in solid-state catalysis.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N9e478cd4b1c6442db9af852d08003624
38 Nf266231154cd42f995e4e5400c182f54
39 sg:journal.1045337
40 schema:name Greatly Enhancing Catalytic Activity of Graphene by Doping the Underlying Metal Substrate
41 schema:pagination 12058
42 schema:productId N4b75494ef7c54fc6ac7d85ca8d18c6a8
43 N75368a7bf1454edebb6b9c59ee43795b
44 N87d1b2f4559b48a9884f81c30fd4eb53
45 N8a0269c2f2744af28c220c5a8ad827f3
46 Nf7c3409f0f9441359b77889f62a6e9c2
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024861578
48 https://doi.org/10.1038/srep12058
49 schema:sdDatePublished 2019-04-10T16:29
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N35afd54799bb447bbc790c8f561f2dd7
52 schema:url http://www.nature.com/articles/srep12058
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N2f0aeb5744ca4655b1478814bb0deb1b rdf:first sg:person.01274052341.03
57 rdf:rest Ndefbdfd8529a400583bf680a022bd8e0
58 N35afd54799bb447bbc790c8f561f2dd7 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N4b75494ef7c54fc6ac7d85ca8d18c6a8 schema:name dimensions_id
61 schema:value pub.1024861578
62 rdf:type schema:PropertyValue
63 N75368a7bf1454edebb6b9c59ee43795b schema:name doi
64 schema:value 10.1038/srep12058
65 rdf:type schema:PropertyValue
66 N87d1b2f4559b48a9884f81c30fd4eb53 schema:name nlm_unique_id
67 schema:value 101563288
68 rdf:type schema:PropertyValue
69 N8a0269c2f2744af28c220c5a8ad827f3 schema:name pubmed_id
70 schema:value 26156332
71 rdf:type schema:PropertyValue
72 N9e478cd4b1c6442db9af852d08003624 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 Na004f9cb9ea64d91b59890b249549489 rdf:first sg:person.01113537071.63
75 rdf:rest N2f0aeb5744ca4655b1478814bb0deb1b
76 Nab64c9b54c6f415fa96e906c77e60ccd rdf:first sg:person.01072225733.21
77 rdf:rest rdf:nil
78 Ndefbdfd8529a400583bf680a022bd8e0 rdf:first sg:person.0766177304.28
79 rdf:rest Nab64c9b54c6f415fa96e906c77e60ccd
80 Nf266231154cd42f995e4e5400c182f54 schema:volumeNumber 5
81 rdf:type schema:PublicationVolume
82 Nf7c3409f0f9441359b77889f62a6e9c2 schema:name readcube_id
83 schema:value 767107c430ae7d06ffd918ec4d2dbe94c313db99d95167fd337856d0b2228fb8
84 rdf:type schema:PropertyValue
85 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
86 schema:name Chemical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
89 schema:name Physical Chemistry (incl. Structural)
90 rdf:type schema:DefinedTerm
91 sg:journal.1045337 schema:issn 2045-2322
92 schema:name Scientific Reports
93 rdf:type schema:Periodical
94 sg:person.01072225733.21 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
95 schema:familyName Zhang
96 schema:givenName Chun
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072225733.21
98 rdf:type schema:Person
99 sg:person.01113537071.63 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
100 schema:familyName Guo
101 schema:givenName Na
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113537071.63
103 rdf:type schema:Person
104 sg:person.01274052341.03 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
105 schema:familyName Xi
106 schema:givenName Yongjie
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274052341.03
108 rdf:type schema:Person
109 sg:person.0766177304.28 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
110 schema:familyName Liu
111 schema:givenName Shuanglong
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766177304.28
113 rdf:type schema:Person
114 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
115 https://doi.org/10.1038/nature04233
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
118 https://doi.org/10.1038/nature04235
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/anie.201200413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024197592
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1021/ja102398n schema:sameAs https://app.dimensions.ai/details/publication/pub.1055847257
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/jp105368j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056077894
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/jp210667f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056086679
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1021/jp3053218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056090067
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1021/jp908829m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056118042
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/jz200043p schema:sameAs https://app.dimensions.ai/details/publication/pub.1037356191
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/nn302674k schema:sameAs https://app.dimensions.ai/details/publication/pub.1010578957
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1021/nn302984x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056224629
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/nn901850u schema:sameAs https://app.dimensions.ai/details/publication/pub.1011755964
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1039/c1cy00361e schema:sameAs https://app.dimensions.ai/details/publication/pub.1001419367
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.1329672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057695436
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.3427246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057950095
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1073/pnas.1416368111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018148356
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1088/0957-4484/22/38/385502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030312603
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1088/1367-2630/11/7/073050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041726579
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevb.73.205101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060617605
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevb.88.165410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060642369
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.101.157601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754200
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/revmodphys.81.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408744
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
171 schema:name Department of Chemistry, National University of Singapore, Singapore 117542.
172 Department of Physics and Graphene Research Centre, National University of Singapore, Singapore 117542
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...