Dynamic phase coexistence in glass–forming liquids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Raffaele Pastore, Antonio Coniglio, Massimo Pica Ciamarra

ABSTRACT

One of the most controversial hypotheses for explaining the heterogeneous dynamics of glasses postulates the temporary coexistence of two phases characterized by a high and by a low diffusivity. In this scenario, two phases with different diffusivities coexist for a time of the order of the relaxation time and mix afterwards. Unfortunately, it is difficult to measure the single-particle diffusivities to test this hypothesis. Indeed, although the non-Gaussian shape of the van-Hove distribution suggests the transient existence of a diffusivity distribution, it is not possible to infer from this quantity whether two or more dynamical phases coexist. Here we provide the first direct observation of the dynamical coexistence of two phases with different diffusivities, by showing that in the deeply supercooled regime the distribution of the single-particle diffusivities acquires a transient bimodal shape. We relate this distribution to the heterogeneity of the dynamics and to the breakdown of the Stokes-Einstein relation, and we show that the coexistence of two dynamical phases occurs up to a timescale growing faster than the relaxation time on cooling, for some of the considered models. Our work offers a basis for rationalizing the dynamics of supercooled liquids and for relating their structural and dynamical properties. More... »

PAGES

11770

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep11770

DOI

http://dx.doi.org/10.1038/srep11770

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041407514

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26156304


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "CNR-SPIN, Dipartimento di Scienze Fisiche, Universit\u00e1 di Napoli Federico II, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pastore", 
        "givenName": "Raffaele", 
        "id": "sg:person.01170513712.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170513712.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "CNR-SPIN, Dipartimento di Scienze Fisiche, Universit\u00e1 di Napoli Federico II, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coniglio", 
        "givenName": "Antonio", 
        "id": "sg:person.01227217136.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanyang Technological University", 
          "id": "https://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "1] CNR-SPIN, Dipartimento di Scienze Fisiche, Universit\u00e1 di Napoli Federico II, Italy [2] Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciamarra", 
        "givenName": "Massimo Pica", 
        "id": "sg:person.01307373304.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307373304.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-1949-0032114-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000885945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.065703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001418594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.065703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001418594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003352182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003352182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1644538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004363520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005355581", 
          "https://doi.org/10.1038/35065704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005355581", 
          "https://doi.org/10.1038/35065704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005870418", 
          "https://doi.org/10.1038/nmat2634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005870418", 
          "https://doi.org/10.1038/nmat2634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnoncrysol.2006.01.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006073299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4sm02147a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006695630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2803062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007830947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.065704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007911606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.065704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007911606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008831181", 
          "https://doi.org/10.1038/nmat3308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.4626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009915210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.4626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009915210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.157801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013962045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.157801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013962045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-3093(00)00225-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018573428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/10/105101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019789327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4sm00739e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020542797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.physchem.51.1.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024468857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.057801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025942869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.057801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025942869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.190601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027319734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.190601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027319734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.1376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032367401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.1376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032367401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4832897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033041181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.055703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034651383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.055703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034651383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1995.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034822855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4882066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035681118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037827953", 
          "https://doi.org/10.1038/nphys788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.5064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038484764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.5064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038484764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1778155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039416636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.52.4134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042795906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.52.4134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042795906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045571509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045571509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10401-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046116974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.060604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050207552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.060604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050207552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.061205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051595248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.061205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051595248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn405476t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056225733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1704269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3062516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057905959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.4364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.4364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.195703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.195703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.33.1037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060778314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.33.1037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060778314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.39.781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.39.781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.3020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.3020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.217801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.217801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5453.627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199691470.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108248224"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "One of the most controversial hypotheses for explaining the heterogeneous dynamics of glasses postulates the temporary coexistence of two phases characterized by a high and by a low diffusivity. In this scenario, two phases with different diffusivities coexist for a time of the order of the relaxation time and mix afterwards. Unfortunately, it is difficult to measure the single-particle diffusivities to test this hypothesis. Indeed, although the non-Gaussian shape of the van-Hove distribution suggests the transient existence of a diffusivity distribution, it is not possible to infer from this quantity whether two or more dynamical phases coexist. Here we provide the first direct observation of the dynamical coexistence of two phases with different diffusivities, by showing that in the deeply supercooled regime the distribution of the single-particle diffusivities acquires a transient bimodal shape. We relate this distribution to the heterogeneity of the dynamics and to the breakdown of the Stokes-Einstein relation, and we show that the coexistence of two dynamical phases occurs up to a timescale growing faster than the relaxation time on cooling, for some of the considered models. Our work offers a basis for rationalizing the dynamics of supercooled liquids and for relating their structural and dynamical properties. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep11770", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Dynamic phase coexistence in glass\u2013forming liquids", 
    "pagination": "11770", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c540c3f239c0c671acf3e88931ecc3767d534b4ba3c628b8443ddf6a1de8a4ee"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26156304"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep11770"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041407514"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep11770", 
      "https://app.dimensions.ai/details/publication/pub.1041407514"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000592.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/150709/srep11770/full/srep11770.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep11770'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep11770'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep11770'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep11770'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      74 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep11770 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Ncf260422129b48bcbffc50d74a894098
4 schema:citation sg:pub.10.1038/35065704
5 sg:pub.10.1038/nmat2634
6 sg:pub.10.1038/nmat3308
7 sg:pub.10.1038/nphys788
8 https://doi.org/10.1006/jcph.1995.1039
9 https://doi.org/10.1016/j.jnoncrysol.2006.01.136
10 https://doi.org/10.1016/s0022-3093(00)00225-8
11 https://doi.org/10.1021/nn405476t
12 https://doi.org/10.1039/c4sm00739e
13 https://doi.org/10.1039/c4sm02147a
14 https://doi.org/10.1063/1.1644538
15 https://doi.org/10.1063/1.1704269
16 https://doi.org/10.1063/1.1778155
17 https://doi.org/10.1063/1.2803062
18 https://doi.org/10.1063/1.3062516
19 https://doi.org/10.1063/1.4832897
20 https://doi.org/10.1063/1.4882066
21 https://doi.org/10.1088/1751-8113/42/10/105101
22 https://doi.org/10.1090/s0002-9947-1949-0032114-7
23 https://doi.org/10.1093/acprof:oso/9780199691470.001.0001
24 https://doi.org/10.1103/physreve.48.4364
25 https://doi.org/10.1103/physreve.51.4626
26 https://doi.org/10.1103/physreve.52.4134
27 https://doi.org/10.1103/physreve.69.061205
28 https://doi.org/10.1103/physrevlett.101.190601
29 https://doi.org/10.1103/physrevlett.105.055703
30 https://doi.org/10.1103/physrevlett.107.065703
31 https://doi.org/10.1103/physrevlett.107.065704
32 https://doi.org/10.1103/physrevlett.109.195703
33 https://doi.org/10.1103/physrevlett.113.157801
34 https://doi.org/10.1103/physrevlett.33.1037
35 https://doi.org/10.1103/physrevlett.39.781
36 https://doi.org/10.1103/physrevlett.66.3020
37 https://doi.org/10.1103/physrevlett.73.1376
38 https://doi.org/10.1103/physrevlett.79.2827
39 https://doi.org/10.1103/physrevlett.80.2338
40 https://doi.org/10.1103/physrevlett.82.5064
41 https://doi.org/10.1103/physrevlett.93.135701
42 https://doi.org/10.1103/physrevlett.96.057801
43 https://doi.org/10.1103/physrevlett.97.217801
44 https://doi.org/10.1103/physrevlett.99.060604
45 https://doi.org/10.1126/science.1166665
46 https://doi.org/10.1126/science.287.5453.627
47 https://doi.org/10.1146/annurev.physchem.51.1.99
48 https://doi.org/10.1209/epl/i2004-10401-5
49 schema:datePublished 2015-12
50 schema:datePublishedReg 2015-12-01
51 schema:description One of the most controversial hypotheses for explaining the heterogeneous dynamics of glasses postulates the temporary coexistence of two phases characterized by a high and by a low diffusivity. In this scenario, two phases with different diffusivities coexist for a time of the order of the relaxation time and mix afterwards. Unfortunately, it is difficult to measure the single-particle diffusivities to test this hypothesis. Indeed, although the non-Gaussian shape of the van-Hove distribution suggests the transient existence of a diffusivity distribution, it is not possible to infer from this quantity whether two or more dynamical phases coexist. Here we provide the first direct observation of the dynamical coexistence of two phases with different diffusivities, by showing that in the deeply supercooled regime the distribution of the single-particle diffusivities acquires a transient bimodal shape. We relate this distribution to the heterogeneity of the dynamics and to the breakdown of the Stokes-Einstein relation, and we show that the coexistence of two dynamical phases occurs up to a timescale growing faster than the relaxation time on cooling, for some of the considered models. Our work offers a basis for rationalizing the dynamics of supercooled liquids and for relating their structural and dynamical properties.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N397c375b8ee74065bb568876de374fff
56 N86bd40fb40f94a59b15dbaba6b028d67
57 sg:journal.1045337
58 schema:name Dynamic phase coexistence in glass–forming liquids
59 schema:pagination 11770
60 schema:productId N016f5ab054cc43b19e897078fbce2565
61 N291814852a914e6ca8d5f835201973ec
62 N38078b58373541a68c51c1885a880a37
63 N675a792c3ab74492b68c37aa84e37aec
64 N85e7f2a6cb2b4c9dbfc3e52fbec79907
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041407514
66 https://doi.org/10.1038/srep11770
67 schema:sdDatePublished 2019-04-10T15:13
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N6a2a016628344ea0b4120f687d69d0e2
70 schema:url http://www.nature.com/srep/2015/150709/srep11770/full/srep11770.html
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N016f5ab054cc43b19e897078fbce2565 schema:name readcube_id
75 schema:value c540c3f239c0c671acf3e88931ecc3767d534b4ba3c628b8443ddf6a1de8a4ee
76 rdf:type schema:PropertyValue
77 N291814852a914e6ca8d5f835201973ec schema:name pubmed_id
78 schema:value 26156304
79 rdf:type schema:PropertyValue
80 N38078b58373541a68c51c1885a880a37 schema:name dimensions_id
81 schema:value pub.1041407514
82 rdf:type schema:PropertyValue
83 N397c375b8ee74065bb568876de374fff schema:volumeNumber 5
84 rdf:type schema:PublicationVolume
85 N567e99641b5e43169192bec83608ad32 rdf:first sg:person.01227217136.16
86 rdf:rest Nad387a3085624827b248ea9668f62702
87 N675a792c3ab74492b68c37aa84e37aec schema:name nlm_unique_id
88 schema:value 101563288
89 rdf:type schema:PropertyValue
90 N6a2a016628344ea0b4120f687d69d0e2 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N85e7f2a6cb2b4c9dbfc3e52fbec79907 schema:name doi
93 schema:value 10.1038/srep11770
94 rdf:type schema:PropertyValue
95 N86bd40fb40f94a59b15dbaba6b028d67 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 Nad387a3085624827b248ea9668f62702 rdf:first sg:person.01307373304.45
98 rdf:rest rdf:nil
99 Ncf260422129b48bcbffc50d74a894098 rdf:first sg:person.01170513712.34
100 rdf:rest N567e99641b5e43169192bec83608ad32
101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
102 schema:name Engineering
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
105 schema:name Interdisciplinary Engineering
106 rdf:type schema:DefinedTerm
107 sg:journal.1045337 schema:issn 2045-2322
108 schema:name Scientific Reports
109 rdf:type schema:Periodical
110 sg:person.01170513712.34 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
111 schema:familyName Pastore
112 schema:givenName Raffaele
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170513712.34
114 rdf:type schema:Person
115 sg:person.01227217136.16 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
116 schema:familyName Coniglio
117 schema:givenName Antonio
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16
119 rdf:type schema:Person
120 sg:person.01307373304.45 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
121 schema:familyName Ciamarra
122 schema:givenName Massimo Pica
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307373304.45
124 rdf:type schema:Person
125 sg:pub.10.1038/35065704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005355581
126 https://doi.org/10.1038/35065704
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nmat2634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005870418
129 https://doi.org/10.1038/nmat2634
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nmat3308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008831181
132 https://doi.org/10.1038/nmat3308
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nphys788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037827953
135 https://doi.org/10.1038/nphys788
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1006/jcph.1995.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034822855
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jnoncrysol.2006.01.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006073299
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0022-3093(00)00225-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018573428
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1021/nn405476t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056225733
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1039/c4sm00739e schema:sameAs https://app.dimensions.ai/details/publication/pub.1020542797
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1039/c4sm02147a schema:sameAs https://app.dimensions.ai/details/publication/pub.1006695630
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.1644538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004363520
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.1704269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774210
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.1778155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039416636
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.2803062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007830947
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.3062516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057905959
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.4832897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033041181
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.4882066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035681118
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1088/1751-8113/42/10/105101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019789327
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1090/s0002-9947-1949-0032114-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000885945
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/acprof:oso/9780199691470.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108248224
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physreve.48.4364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715936
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreve.51.4626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009915210
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physreve.52.4134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042795906
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreve.69.061205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051595248
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.101.190601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027319734
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.105.055703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034651383
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.107.065703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001418594
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.107.065704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007911606
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.109.195703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760552
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.113.157801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013962045
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.33.1037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060778314
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.39.781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782039
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.66.3020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802642
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.73.1376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032367401
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.79.2827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003352182
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.80.2338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045571509
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.82.5064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038484764
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.93.135701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829050
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.96.057801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025942869
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.97.217801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833172
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.99.060604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050207552
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1126/science.1166665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459108
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1126/science.287.5453.627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568167
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1146/annurev.physchem.51.1.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024468857
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1209/epl/i2004-10401-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046116974
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.4691.a schema:alternateName University of Naples Federico II
220 schema:name CNR-SPIN, Dipartimento di Scienze Fisiche, Universitá di Napoli Federico II, Italy.
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
223 schema:name 1] CNR-SPIN, Dipartimento di Scienze Fisiche, Universitá di Napoli Federico II, Italy [2] Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore.
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...