Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Shula L. Chen, Weimin M. Chen, Fumitaro Ishikawa, Irina A. Buyanova

ABSTRACT

III-V semiconductor nanowires (NWs) such as GaAs NWs form an interesting artificial materials system promising for applications in advanced optoelectronic and photonic devices, thanks to the advantages offered by the 1D architecture and the possibility to combine it with the main-stream silicon technology. Alloying of GaAs with nitrogen can further enhance performance and extend device functionality via band-structure and lattice engineering. However, due to a large surface-to-volume ratio, III-V NWs suffer from severe non-radiative carrier recombination at/near NWs surfaces that significantly degrades optical quality. Here we show that increasing nitrogen composition in novel GaAs/GaNAs core/shell NWs can strongly suppress the detrimental surface recombination. This conclusion is based on our experimental finding that lifetimes of photo-generated free excitons and free carriers increase with increasing N composition, as revealed from our time-resolved photoluminescence (PL) studies. This is accompanied by a sizable enhancement in the PL intensity of the GaAs/GaNAs core/shell NWs at room temperature. The observed N-induced suppression of the surface recombination is concluded to be a result of an N-induced modification of the surface states that are responsible for the nonradiative recombination. Our results, therefore, demonstrate the great potential of incorporating GaNAs in III-V NWs to achieve efficient nano-scale light emitters. More... »

PAGES

11653

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep11653

DOI

http://dx.doi.org/10.1038/srep11653

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030804663

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26100755


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Link\u00f6ping University", 
          "id": "https://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Department of Physics, Chemistry and Biology, Link\u00f6ping University, 58183, Link\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Shula L.", 
        "id": "sg:person.0716576165.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716576165.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Link\u00f6ping University", 
          "id": "https://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Department of Physics, Chemistry and Biology, Link\u00f6ping University, 58183, Link\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Weimin M.", 
        "id": "sg:person.01005516440.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005516440.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ehime University", 
          "id": "https://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishikawa", 
        "givenName": "Fumitaro", 
        "id": "sg:person.01131775300.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131775300.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Link\u00f6ping University", 
          "id": "https://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Department of Physics, Chemistry and Biology, Link\u00f6ping University, 58183, Link\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buyanova", 
        "givenName": "Irina A.", 
        "id": "sg:person.01300445540.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300445540.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0957-4484/24/6/065601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005094181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.200675620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006895852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201401342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009715232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014679567", 
          "https://doi.org/10.1038/nphoton.2013.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201100666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017541396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35051047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017657623", 
          "https://doi.org/10.1038/35051047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35051047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017657623", 
          "https://doi.org/10.1038/35051047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023322703", 
          "https://doi.org/10.1038/nmat2385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200701337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023798982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201202597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024887109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl502909k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025982565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029733148", 
          "https://doi.org/10.1038/nature01141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029733148", 
          "https://doi.org/10.1038/nature01141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030150301", 
          "https://doi.org/10.1038/ncomms2776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1062340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033493721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.245325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034110558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.245325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034110558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035939692", 
          "https://doi.org/10.1038/nmat2253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9041774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037074738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9041774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037074738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4905090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038530594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl503454s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039086538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039429773", 
          "https://doi.org/10.1038/nphoton.2010.315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415617a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041803425", 
          "https://doi.org/10.1038/415617a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415617a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041803425", 
          "https://doi.org/10.1038/415617a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1101(02)00390-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042752260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1101(02)00390-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042752260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1230969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050690134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl502281p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9016336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9016336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.100873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057648459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.120988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057685161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.124429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057688565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.126308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057690415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1479212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057710703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2967877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057888287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3275703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057929667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.331665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057935741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3519980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057966833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4760273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058061915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.176.993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.176.993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.35.8281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060543032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.10743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060574810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.10743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060574810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.10283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060590709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.10283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060590709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.033203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.033203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.125209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.125209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.115334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.115334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.125304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.125304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.045310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.045310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/apex.1.035004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063030415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.48.125501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063084105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/jjap.53.065001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073838781"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "III-V semiconductor nanowires (NWs) such as GaAs NWs form an interesting artificial materials system promising for applications in advanced optoelectronic and photonic devices, thanks to the advantages offered by the 1D architecture and the possibility to combine it with the main-stream silicon technology. Alloying of GaAs with nitrogen can further enhance performance and extend device functionality via band-structure and lattice engineering. However, due to a large surface-to-volume ratio, III-V NWs suffer from severe non-radiative carrier recombination at/near NWs surfaces that significantly degrades optical quality. Here we show that increasing nitrogen composition in novel GaAs/GaNAs core/shell NWs can strongly suppress the detrimental surface recombination. This conclusion is based on our experimental finding that lifetimes of photo-generated free excitons and free carriers increase with increasing N composition, as revealed from our time-resolved photoluminescence (PL) studies. This is accompanied by a sizable enhancement in the PL intensity of the GaAs/GaNAs core/shell NWs at room temperature. The observed N-induced suppression of the surface recombination is concluded to be a result of an N-induced modification of the surface states that are responsible for the nonradiative recombination. Our results, therefore, demonstrate the great potential of incorporating GaNAs in III-V NWs to achieve efficient nano-scale light emitters. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep11653", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires", 
    "pagination": "11653", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "92bfdb9ff1b9694de81686d7df3fb2f1529de3606c1b2cdf4d2546b619bba697"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26100755"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep11653"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030804663"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep11653", 
      "https://app.dimensions.ai/details/publication/pub.1030804663"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/150623/srep11653/full/srep11653.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep11653'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep11653'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep11653'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep11653'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      76 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep11653 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N80e21797fcfd4fb298adc73855d4a7a7
4 schema:citation sg:pub.10.1038/35051047
5 sg:pub.10.1038/415617a
6 sg:pub.10.1038/nature01141
7 sg:pub.10.1038/ncomms2776
8 sg:pub.10.1038/nmat2253
9 sg:pub.10.1038/nmat2385
10 sg:pub.10.1038/nphoton.2010.315
11 sg:pub.10.1038/nphoton.2013.303
12 https://doi.org/10.1002/adfm.200701337
13 https://doi.org/10.1002/adma.201202597
14 https://doi.org/10.1002/aenm.201100666
15 https://doi.org/10.1002/pssb.200675620
16 https://doi.org/10.1002/smll.201401342
17 https://doi.org/10.1016/s0038-1101(02)00390-8
18 https://doi.org/10.1021/nl502281p
19 https://doi.org/10.1021/nl502909k
20 https://doi.org/10.1021/nl503454s
21 https://doi.org/10.1021/nl9016336
22 https://doi.org/10.1021/nl9041774
23 https://doi.org/10.1063/1.100873
24 https://doi.org/10.1063/1.120988
25 https://doi.org/10.1063/1.124429
26 https://doi.org/10.1063/1.126308
27 https://doi.org/10.1063/1.1479212
28 https://doi.org/10.1063/1.2967877
29 https://doi.org/10.1063/1.3275703
30 https://doi.org/10.1063/1.331665
31 https://doi.org/10.1063/1.3519980
32 https://doi.org/10.1063/1.4760273
33 https://doi.org/10.1063/1.4905090
34 https://doi.org/10.1088/0957-4484/24/6/065601
35 https://doi.org/10.1103/physrev.176.993
36 https://doi.org/10.1103/physrevb.35.8281
37 https://doi.org/10.1103/physrevb.51.10743
38 https://doi.org/10.1103/physrevb.59.10283
39 https://doi.org/10.1103/physrevb.63.033203
40 https://doi.org/10.1103/physrevb.71.125209
41 https://doi.org/10.1103/physrevb.80.245325
42 https://doi.org/10.1103/physrevb.81.115334
43 https://doi.org/10.1103/physrevb.87.125304
44 https://doi.org/10.1103/physrevb.89.045310
45 https://doi.org/10.1103/physrevlett.72.924
46 https://doi.org/10.1126/science.1062340
47 https://doi.org/10.1126/science.1230969
48 https://doi.org/10.1143/apex.1.035004
49 https://doi.org/10.1143/jjap.48.125501
50 https://doi.org/10.7567/jjap.53.065001
51 schema:datePublished 2015-12
52 schema:datePublishedReg 2015-12-01
53 schema:description III-V semiconductor nanowires (NWs) such as GaAs NWs form an interesting artificial materials system promising for applications in advanced optoelectronic and photonic devices, thanks to the advantages offered by the 1D architecture and the possibility to combine it with the main-stream silicon technology. Alloying of GaAs with nitrogen can further enhance performance and extend device functionality via band-structure and lattice engineering. However, due to a large surface-to-volume ratio, III-V NWs suffer from severe non-radiative carrier recombination at/near NWs surfaces that significantly degrades optical quality. Here we show that increasing nitrogen composition in novel GaAs/GaNAs core/shell NWs can strongly suppress the detrimental surface recombination. This conclusion is based on our experimental finding that lifetimes of photo-generated free excitons and free carriers increase with increasing N composition, as revealed from our time-resolved photoluminescence (PL) studies. This is accompanied by a sizable enhancement in the PL intensity of the GaAs/GaNAs core/shell NWs at room temperature. The observed N-induced suppression of the surface recombination is concluded to be a result of an N-induced modification of the surface states that are responsible for the nonradiative recombination. Our results, therefore, demonstrate the great potential of incorporating GaNAs in III-V NWs to achieve efficient nano-scale light emitters.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N3d446f33d17847f0a29a7a8bddcff6bc
58 N9e7a7cf1aeb64d62ab17506af7d52bdd
59 sg:journal.1045337
60 schema:name Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires
61 schema:pagination 11653
62 schema:productId N6871028988e4461db8621a24d9a8655a
63 N7ad62a3e1a184df1b951d945b8756b80
64 N7f0b39b547ee46799320ab887e0bfa00
65 Ncc0fef4f9fce46a5aa4f34c407643be1
66 Nfa4527e6da59480b9ff681a4804b3f4d
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030804663
68 https://doi.org/10.1038/srep11653
69 schema:sdDatePublished 2019-04-10T18:56
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N4fb6370cc8d8442c81e25d57ab6ec99f
72 schema:url http://www.nature.com/srep/2015/150623/srep11653/full/srep11653.html
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N2de43d84fedd42de8d5d5edd6ce969fa rdf:first sg:person.01300445540.64
77 rdf:rest rdf:nil
78 N3d446f33d17847f0a29a7a8bddcff6bc schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 N4fb6370cc8d8442c81e25d57ab6ec99f schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N561a4f4e389d4a12add377d935b501c3 rdf:first sg:person.01131775300.43
83 rdf:rest N2de43d84fedd42de8d5d5edd6ce969fa
84 N6871028988e4461db8621a24d9a8655a schema:name pubmed_id
85 schema:value 26100755
86 rdf:type schema:PropertyValue
87 N69f21027121b451e9037c62c77ee31b2 rdf:first sg:person.01005516440.93
88 rdf:rest N561a4f4e389d4a12add377d935b501c3
89 N7ad62a3e1a184df1b951d945b8756b80 schema:name doi
90 schema:value 10.1038/srep11653
91 rdf:type schema:PropertyValue
92 N7f0b39b547ee46799320ab887e0bfa00 schema:name readcube_id
93 schema:value 92bfdb9ff1b9694de81686d7df3fb2f1529de3606c1b2cdf4d2546b619bba697
94 rdf:type schema:PropertyValue
95 N80e21797fcfd4fb298adc73855d4a7a7 rdf:first sg:person.0716576165.19
96 rdf:rest N69f21027121b451e9037c62c77ee31b2
97 N9e7a7cf1aeb64d62ab17506af7d52bdd schema:volumeNumber 5
98 rdf:type schema:PublicationVolume
99 Ncc0fef4f9fce46a5aa4f34c407643be1 schema:name dimensions_id
100 schema:value pub.1030804663
101 rdf:type schema:PropertyValue
102 Nfa4527e6da59480b9ff681a4804b3f4d schema:name nlm_unique_id
103 schema:value 101563288
104 rdf:type schema:PropertyValue
105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
106 schema:name Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
109 schema:name Materials Engineering
110 rdf:type schema:DefinedTerm
111 sg:journal.1045337 schema:issn 2045-2322
112 schema:name Scientific Reports
113 rdf:type schema:Periodical
114 sg:person.01005516440.93 schema:affiliation https://www.grid.ac/institutes/grid.5640.7
115 schema:familyName Chen
116 schema:givenName Weimin M.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005516440.93
118 rdf:type schema:Person
119 sg:person.01131775300.43 schema:affiliation https://www.grid.ac/institutes/grid.255464.4
120 schema:familyName Ishikawa
121 schema:givenName Fumitaro
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131775300.43
123 rdf:type schema:Person
124 sg:person.01300445540.64 schema:affiliation https://www.grid.ac/institutes/grid.5640.7
125 schema:familyName Buyanova
126 schema:givenName Irina A.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300445540.64
128 rdf:type schema:Person
129 sg:person.0716576165.19 schema:affiliation https://www.grid.ac/institutes/grid.5640.7
130 schema:familyName Chen
131 schema:givenName Shula L.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716576165.19
133 rdf:type schema:Person
134 sg:pub.10.1038/35051047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017657623
135 https://doi.org/10.1038/35051047
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/415617a schema:sameAs https://app.dimensions.ai/details/publication/pub.1041803425
138 https://doi.org/10.1038/415617a
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nature01141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029733148
141 https://doi.org/10.1038/nature01141
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/ncomms2776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030150301
144 https://doi.org/10.1038/ncomms2776
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nmat2253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035939692
147 https://doi.org/10.1038/nmat2253
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nmat2385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023322703
150 https://doi.org/10.1038/nmat2385
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nphoton.2010.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039429773
153 https://doi.org/10.1038/nphoton.2010.315
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nphoton.2013.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014679567
156 https://doi.org/10.1038/nphoton.2013.303
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/adfm.200701337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023798982
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/adma.201202597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024887109
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/aenm.201100666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017541396
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/pssb.200675620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006895852
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/smll.201401342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009715232
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0038-1101(02)00390-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042752260
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/nl502281p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220918
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/nl502909k schema:sameAs https://app.dimensions.ai/details/publication/pub.1025982565
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/nl503454s schema:sameAs https://app.dimensions.ai/details/publication/pub.1039086538
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/nl9016336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222033
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/nl9041774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037074738
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.100873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057648459
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.120988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057685161
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1063/1.124429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057688565
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.126308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057690415
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1063/1.1479212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057710703
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.2967877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057888287
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1063/1.3275703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057929667
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.331665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057935741
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1063/1.3519980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057966833
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1063/1.4760273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058061915
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1063/1.4905090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038530594
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1088/0957-4484/24/6/065601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005094181
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrev.176.993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440262
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevb.35.8281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060543032
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevb.51.10743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060574810
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevb.59.10283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060590709
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevb.63.033203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060598461
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevb.71.125209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060613137
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevb.80.245325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034110558
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevb.81.115334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632039
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevb.87.125304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641160
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevb.89.045310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060642795
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.72.924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809431
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1062340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033493721
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.1230969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050690134
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1143/apex.1.035004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063030415
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1143/jjap.48.125501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063084105
233 rdf:type schema:CreativeWork
234 https://doi.org/10.7567/jjap.53.065001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073838781
235 rdf:type schema:CreativeWork
236 https://www.grid.ac/institutes/grid.255464.4 schema:alternateName Ehime University
237 schema:name Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.5640.7 schema:alternateName Linköping University
240 schema:name Department of Physics, Chemistry and Biology, Linköping University, 58183, Linköping, Sweden
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...