Processes driving nocturnal transpiration and implications for estimating land evapotranspiration View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09

AUTHORS

Víctor Resco de Dios, Jacques Roy, Juan Pedro Ferrio, Josu G. Alday, Damien Landais, Alexandru Milcu, Arthur Gessler

ABSTRACT

Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake. More... »

PAGES

10975

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep10975

DOI

http://dx.doi.org/10.1038/srep10975

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053038126

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26074373


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atmosphere", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon Dioxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gossypium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phaseolus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photoperiod", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Leaves", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Transpiration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Volatilization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Western Sydney University", 
          "id": "https://www.grid.ac/institutes/grid.1029.a", 
          "name": [
            "Department of Crop and Forest Sciences-AGROTECNIO Center, Universitat de Lleida, 25198 Lleida, Spain", 
            "Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW 2753, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Dios", 
        "givenName": "V\u00edctor Resco", 
        "id": "sg:person.016317077517.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016317077517.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ecotron Europ\u00e9en de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Jacques", 
        "id": "sg:person.01344232632.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344232632.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lleida", 
          "id": "https://www.grid.ac/institutes/grid.15043.33", 
          "name": [
            "Department of Crop and Forest Sciences-AGROTECNIO Center, Universitat de Lleida, 25198 Lleida, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferrio", 
        "givenName": "Juan Pedro", 
        "id": "sg:person.07414123367.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07414123367.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Liverpool", 
          "id": "https://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alday", 
        "givenName": "Josu G.", 
        "id": "sg:person.01271552102.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271552102.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ecotron Europ\u00e9en de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Landais", 
        "givenName": "Damien", 
        "id": "sg:person.0663100632.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663100632.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Ecotron Europ\u00e9en de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France", 
            "CNRS, Centre d\u2019Ecologie Fonctionnelle et Evolutive (CEFE, UMR-5175), 1919, route de Mende, 34293, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milcu", 
        "givenName": "Alexandru", 
        "id": "sg:person.01161712533.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161712533.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Centre for Agricultural Landscape Research", 
          "id": "https://www.grid.ac/institutes/grid.433014.1", 
          "name": [
            "Swiss Federal Institute for Forest, Snow and Landscape Research WSL Long-term Forest Ecosystem Research (LWF), 8903 Birmensdorf, Switzerland", 
            "Institute for Landscape Biogeochemistry, Leibniz-Centre for Agricultural Landscape Research (ZALF), 15374 M\u00fcncheberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gessler", 
        "givenName": "Arthur", 
        "id": "sg:person.01004713335.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004713335.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/ele.12243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000624513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00194433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001096489", 
          "https://doi.org/10.1007/bf00194433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2012.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003147281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009185086", 
          "https://doi.org/10.1038/ngeo2247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/24.10.1119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011278177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/fp14067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013749018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envexpbot.2012.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014209237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2014.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015488486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tpu051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016428799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tpt091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016697620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nph.12382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018504518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.106.092940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018600247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3040.2008.01895.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023129220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-3040.2000.00626.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028496161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-3040.2000.00626.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028496161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3040.2007.01658.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031027822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-3040.1997.d01-71.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031065017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2012.04068.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031677054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/191974a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032751847", 
          "https://doi.org/10.1038/191974a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-008-9741-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033693034", 
          "https://doi.org/10.1007/s11104-008-9741-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-008-9741-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033693034", 
          "https://doi.org/10.1007/s11104-008-9741-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pce.12241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036388389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038059466", 
          "https://doi.org/10.1038/nclimate2281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2009.01295.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038217815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2009.01295.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038217815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041023521", 
          "https://doi.org/10.1038/nature09396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041023521", 
          "https://doi.org/10.1038/nature09396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-037x.1998.tb00377.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041190603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2013.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047777664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011rg000373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049750527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2009.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050125447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051071497", 
          "https://doi.org/10.1038/nature01843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051071497", 
          "https://doi.org/10.1038/nature01843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051071497", 
          "https://doi.org/10.1038/nature01843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tpq053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052744881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tpq053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052744881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1140746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062455893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1939390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069663245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/psb.26964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072308199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109704884", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704884", 
          "https://doi.org/10.1007/978-1-4419-0318-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704884", 
          "https://doi.org/10.1007/978-1-4419-0318-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704884", 
          "https://doi.org/10.1007/978-1-4419-0318-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep10975", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3714383", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Processes driving nocturnal transpiration and implications for estimating land evapotranspiration", 
    "pagination": "10975", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fca2e569e5b011c9fe3c3197117a4683312b1d1da91a622ee6076664a8002bd9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26074373"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep10975"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053038126"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep10975", 
      "https://app.dimensions.ai/details/publication/pub.1053038126"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000596.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/srep10975"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep10975'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep10975'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep10975'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep10975'


 

This table displays all metadata directly associated to this object as RDF triples.

292 TRIPLES      21 PREDICATES      76 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep10975 schema:about N301c87bc58c4497b931ba1f4259d974e
2 N3784bf588e3646069728969e7d647577
3 N4c41270a02e242619428e467fdefca1c
4 N4d82dc92b50e4c4f9bf79fa898697d9a
5 N5232135d74fa4467b532c859b8503e80
6 N69217a44b6cf46ff8e9d3032a841b592
7 Na839448f43ef4afaa062858da9fbb375
8 Nb981d8de998841c7a21c48f21239c1d8
9 Nc88fd3f180f842f1986d7f20b2c02bc9
10 Nd7eeefc30e05474bb312a07893e5c0df
11 Ndd13d462b2894116b058e3f0ec5a5180
12 Ndf0e824ad2b84e7f9465bf8fc0ca83cc
13 Nff7e722a9d2042b09529f22288081824
14 anzsrc-for:06
15 anzsrc-for:0607
16 schema:author Ne7095a11cab3496da909eb4191f6c17c
17 schema:citation sg:pub.10.1007/978-1-4419-0318-1
18 sg:pub.10.1007/bf00194433
19 sg:pub.10.1007/s11104-008-9741-y
20 sg:pub.10.1038/191974a0
21 sg:pub.10.1038/nature01843
22 sg:pub.10.1038/nature09396
23 sg:pub.10.1038/nclimate2281
24 sg:pub.10.1038/ngeo2247
25 https://app.dimensions.ai/details/publication/pub.1109704884
26 https://doi.org/10.1016/j.agrformet.2009.04.005
27 https://doi.org/10.1016/j.agrformet.2013.11.008
28 https://doi.org/10.1016/j.agrformet.2014.01.011
29 https://doi.org/10.1016/j.ecolind.2012.10.023
30 https://doi.org/10.1016/j.envexpbot.2012.03.013
31 https://doi.org/10.1029/2011rg000373
32 https://doi.org/10.1046/j.1365-3040.1997.d01-71.x
33 https://doi.org/10.1046/j.1365-3040.2000.00626.x
34 https://doi.org/10.1071/fp14067
35 https://doi.org/10.1093/treephys/24.10.1119
36 https://doi.org/10.1093/treephys/tpq053
37 https://doi.org/10.1093/treephys/tpt091
38 https://doi.org/10.1093/treephys/tpu051
39 https://doi.org/10.1104/pp.106.092940
40 https://doi.org/10.1111/ele.12243
41 https://doi.org/10.1111/j.1365-3040.2007.01658.x
42 https://doi.org/10.1111/j.1365-3040.2008.01895.x
43 https://doi.org/10.1111/j.1439-037x.1998.tb00377.x
44 https://doi.org/10.1111/j.1461-0248.2009.01295.x
45 https://doi.org/10.1111/j.1469-8137.2012.04068.x
46 https://doi.org/10.1111/nph.12382
47 https://doi.org/10.1111/pce.12241
48 https://doi.org/10.1126/science.1140746
49 https://doi.org/10.2307/1939390
50 https://doi.org/10.4161/psb.26964
51 schema:datePublished 2015-09
52 schema:datePublishedReg 2015-09-01
53 schema:description Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N8ce309a2c8064735b6ffcb51f615fd79
58 Nff131e29be3f4c3c968a828171511449
59 sg:journal.1045337
60 schema:name Processes driving nocturnal transpiration and implications for estimating land evapotranspiration
61 schema:pagination 10975
62 schema:productId N36da30726d794dfeb6222a7b8d4b29a5
63 N47164700a576448b9dd2f6a5b882a7eb
64 N4e66f2a8c2a54346b13b167faa055162
65 N59f56d5bdc034287bed66ed2afbb23f3
66 N5feeaff627ed4749976d1b5c123e5430
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053038126
68 https://doi.org/10.1038/srep10975
69 schema:sdDatePublished 2019-04-10T20:09
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nfceb28ffeba34d539a66aba4c920d29d
72 schema:url http://www.nature.com/articles/srep10975
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N1894cf5fe3bf43d28fb65a3d0d6ff27a schema:name Ecotron Européen de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France
77 rdf:type schema:Organization
78 N2decc1c4d34e469bbb577d4054107b46 rdf:first sg:person.01004713335.43
79 rdf:rest rdf:nil
80 N301c87bc58c4497b931ba1f4259d974e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Atmosphere
82 rdf:type schema:DefinedTerm
83 N36da30726d794dfeb6222a7b8d4b29a5 schema:name dimensions_id
84 schema:value pub.1053038126
85 rdf:type schema:PropertyValue
86 N3784bf588e3646069728969e7d647577 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Volatilization
88 rdf:type schema:DefinedTerm
89 N47164700a576448b9dd2f6a5b882a7eb schema:name nlm_unique_id
90 schema:value 101563288
91 rdf:type schema:PropertyValue
92 N4c41270a02e242619428e467fdefca1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Ecosystem
94 rdf:type schema:DefinedTerm
95 N4d82dc92b50e4c4f9bf79fa898697d9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Photoperiod
97 rdf:type schema:DefinedTerm
98 N4e66f2a8c2a54346b13b167faa055162 schema:name doi
99 schema:value 10.1038/srep10975
100 rdf:type schema:PropertyValue
101 N5232135d74fa4467b532c859b8503e80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Phaseolus
103 rdf:type schema:DefinedTerm
104 N54afe9788e3d46478814b0d8d5ef04a8 rdf:first sg:person.0663100632.30
105 rdf:rest N798830c900a043e99af2940562732226
106 N59f56d5bdc034287bed66ed2afbb23f3 schema:name readcube_id
107 schema:value fca2e569e5b011c9fe3c3197117a4683312b1d1da91a622ee6076664a8002bd9
108 rdf:type schema:PropertyValue
109 N5feeaff627ed4749976d1b5c123e5430 schema:name pubmed_id
110 schema:value 26074373
111 rdf:type schema:PropertyValue
112 N69217a44b6cf46ff8e9d3032a841b592 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Temperature
114 rdf:type schema:DefinedTerm
115 N798830c900a043e99af2940562732226 rdf:first sg:person.01161712533.94
116 rdf:rest N2decc1c4d34e469bbb577d4054107b46
117 N8ce309a2c8064735b6ffcb51f615fd79 schema:volumeNumber 5
118 rdf:type schema:PublicationVolume
119 Na139de8378514a1a90c059db175bd60a rdf:first sg:person.01271552102.78
120 rdf:rest N54afe9788e3d46478814b0d8d5ef04a8
121 Na839448f43ef4afaa062858da9fbb375 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Carbon Dioxide
123 rdf:type schema:DefinedTerm
124 Nb981d8de998841c7a21c48f21239c1d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Gossypium
126 rdf:type schema:DefinedTerm
127 Nc88fd3f180f842f1986d7f20b2c02bc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Plant Transpiration
129 rdf:type schema:DefinedTerm
130 Ncc2e6474b9e64fd79fef2c9cf83f13c8 rdf:first sg:person.01344232632.08
131 rdf:rest Ne3aeb56a24564ff0af43aaebc203e276
132 Nd7eeefc30e05474bb312a07893e5c0df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Soil
134 rdf:type schema:DefinedTerm
135 Ndd13d462b2894116b058e3f0ec5a5180 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Plant Leaves
137 rdf:type schema:DefinedTerm
138 Ndf0e824ad2b84e7f9465bf8fc0ca83cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Models, Statistical
140 rdf:type schema:DefinedTerm
141 Ne3aeb56a24564ff0af43aaebc203e276 rdf:first sg:person.07414123367.27
142 rdf:rest Na139de8378514a1a90c059db175bd60a
143 Ne7095a11cab3496da909eb4191f6c17c rdf:first sg:person.016317077517.20
144 rdf:rest Ncc2e6474b9e64fd79fef2c9cf83f13c8
145 Ne9812537a9d34561be7101a9a0d39823 schema:name Ecotron Européen de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France
146 rdf:type schema:Organization
147 Nfceb28ffeba34d539a66aba4c920d29d schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 Nff131e29be3f4c3c968a828171511449 schema:issueNumber 1
150 rdf:type schema:PublicationIssue
151 Nff7e722a9d2042b09529f22288081824 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Water
153 rdf:type schema:DefinedTerm
154 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
155 schema:name Biological Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
158 schema:name Plant Biology
159 rdf:type schema:DefinedTerm
160 sg:grant.3714383 http://pending.schema.org/fundedItem sg:pub.10.1038/srep10975
161 rdf:type schema:MonetaryGrant
162 sg:journal.1045337 schema:issn 2045-2322
163 schema:name Scientific Reports
164 rdf:type schema:Periodical
165 sg:person.01004713335.43 schema:affiliation https://www.grid.ac/institutes/grid.433014.1
166 schema:familyName Gessler
167 schema:givenName Arthur
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004713335.43
169 rdf:type schema:Person
170 sg:person.01161712533.94 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
171 schema:familyName Milcu
172 schema:givenName Alexandru
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161712533.94
174 rdf:type schema:Person
175 sg:person.01271552102.78 schema:affiliation https://www.grid.ac/institutes/grid.10025.36
176 schema:familyName Alday
177 schema:givenName Josu G.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271552102.78
179 rdf:type schema:Person
180 sg:person.01344232632.08 schema:affiliation N1894cf5fe3bf43d28fb65a3d0d6ff27a
181 schema:familyName Roy
182 schema:givenName Jacques
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344232632.08
184 rdf:type schema:Person
185 sg:person.016317077517.20 schema:affiliation https://www.grid.ac/institutes/grid.1029.a
186 schema:familyName de Dios
187 schema:givenName Víctor Resco
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016317077517.20
189 rdf:type schema:Person
190 sg:person.0663100632.30 schema:affiliation Ne9812537a9d34561be7101a9a0d39823
191 schema:familyName Landais
192 schema:givenName Damien
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663100632.30
194 rdf:type schema:Person
195 sg:person.07414123367.27 schema:affiliation https://www.grid.ac/institutes/grid.15043.33
196 schema:familyName Ferrio
197 schema:givenName Juan Pedro
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07414123367.27
199 rdf:type schema:Person
200 sg:pub.10.1007/978-1-4419-0318-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109704884
201 https://doi.org/10.1007/978-1-4419-0318-1
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/bf00194433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001096489
204 https://doi.org/10.1007/bf00194433
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s11104-008-9741-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033693034
207 https://doi.org/10.1007/s11104-008-9741-y
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/191974a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032751847
210 https://doi.org/10.1038/191974a0
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nature01843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051071497
213 https://doi.org/10.1038/nature01843
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nature09396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041023521
216 https://doi.org/10.1038/nature09396
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nclimate2281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038059466
219 https://doi.org/10.1038/nclimate2281
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/ngeo2247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009185086
222 https://doi.org/10.1038/ngeo2247
223 rdf:type schema:CreativeWork
224 https://app.dimensions.ai/details/publication/pub.1109704884 schema:CreativeWork
225 https://doi.org/10.1016/j.agrformet.2009.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050125447
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.agrformet.2013.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047777664
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.agrformet.2014.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015488486
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.ecolind.2012.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003147281
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.envexpbot.2012.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014209237
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1029/2011rg000373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049750527
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1046/j.1365-3040.1997.d01-71.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031065017
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1046/j.1365-3040.2000.00626.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028496161
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1071/fp14067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013749018
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/treephys/24.10.1119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011278177
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/treephys/tpq053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744881
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/treephys/tpt091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016697620
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/treephys/tpu051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016428799
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1104/pp.106.092940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018600247
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1111/ele.12243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000624513
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1111/j.1365-3040.2007.01658.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031027822
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1111/j.1365-3040.2008.01895.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023129220
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1111/j.1439-037x.1998.tb00377.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041190603
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1111/j.1461-0248.2009.01295.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038217815
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1111/j.1469-8137.2012.04068.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031677054
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1111/nph.12382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018504518
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1111/pce.12241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036388389
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1126/science.1140746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455893
270 rdf:type schema:CreativeWork
271 https://doi.org/10.2307/1939390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069663245
272 rdf:type schema:CreativeWork
273 https://doi.org/10.4161/psb.26964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072308199
274 rdf:type schema:CreativeWork
275 https://www.grid.ac/institutes/grid.10025.36 schema:alternateName University of Liverpool
276 schema:name School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
277 rdf:type schema:Organization
278 https://www.grid.ac/institutes/grid.1029.a schema:alternateName Western Sydney University
279 schema:name Department of Crop and Forest Sciences-AGROTECNIO Center, Universitat de Lleida, 25198 Lleida, Spain
280 Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW 2753, Australia
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.15043.33 schema:alternateName University of Lleida
283 schema:name Department of Crop and Forest Sciences-AGROTECNIO Center, Universitat de Lleida, 25198 Lleida, Spain
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.433014.1 schema:alternateName Leibniz Centre for Agricultural Landscape Research
286 schema:name Institute for Landscape Biogeochemistry, Leibniz-Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
287 Swiss Federal Institute for Forest, Snow and Landscape Research WSL Long-term Forest Ecosystem Research (LWF), 8903 Birmensdorf, Switzerland
288 rdf:type schema:Organization
289 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
290 schema:name CNRS, Centre d’Ecologie Fonctionnelle et Evolutive (CEFE, UMR-5175), 1919, route de Mende, 34293, Montpellier, France
291 Ecotron Européen de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France
292 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...