Effect of divalent Ba cation substitution with Sr on coupled ‘multiglass’ state in the magnetoelectric multiferroic compound Ba3NbFe3Si2O14 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09

AUTHORS

Satyapal Singh Rathore, Satish Vitta

ABSTRACT

(Ba/Sr)3NbFe3Si2O14 is a magneto-electric multiferroic with an incommensurate antiferromagnetic spiral magnetic structure which induces electric polarization at 26 K. Structural studies show that both the compounds have similar crystal structure down to 6 K. They exhibit a transition, TN at 26 K and 25 K respectively, as indicated by heat capacity and magnetization, into an antiferromagnetic state. Although Ba and Sr are isovalent, they exhibit very different static and dynamic magnetic behaviors. The Ba-compound exhibits a glassy behavior with critical slowing dynamics with a freezing temperature of ~35 K and a critical exponent of 3.9, a value close to the 3-D Ising model above TN, in addition to the invariant transition into an antiferromagnetic state. The Sr-compound however does not exhibit any dispersive behavior except for the invariant transition at TN. The dielectric constant reflects magnetic behavior of the two compounds: the Ba-compound has two distinct dispersive peaks while the Sr-compound has a single dispersive peak. Thus the compounds exhibit coupled 'multiglass' behavior. The difference in magnetic properties between the two compounds is found to be due to modifications to super exchange path angle and length as well as anti-site defects which stabilize either ferromagnetic or antiferromagnetic interactions. More... »

PAGES

9751

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep09751

DOI

http://dx.doi.org/10.1038/srep09751

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003575688

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25988657


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Bombay", 
          "id": "https://www.grid.ac/institutes/grid.417971.d", 
          "name": [
            "Indian Institute of Technology Bombay, Mumbai 400076, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rathore", 
        "givenName": "Satyapal Singh", 
        "id": "sg:person.01322312641.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322312641.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Bombay", 
          "id": "https://www.grid.ac/institutes/grid.417971.d", 
          "name": [
            "Indian Institute of Technology Bombay, Mumbai 400076, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitta", 
        "givenName": "Satish", 
        "id": "sg:person.01325463133.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325463133.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.4866187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000808811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.067601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003273940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.067601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003273940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006047602", 
          "https://doi.org/10.1038/ncomms3063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00150199408245120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006306688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00150199408245083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006622456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.104417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011640914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.104417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011640914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012273606", 
          "https://doi.org/10.1038/nature05023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012273606", 
          "https://doi.org/10.1038/nature05023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013420111", 
          "https://doi.org/10.1038/nmat1560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013420111", 
          "https://doi.org/10.1038/nmat1560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/6/22/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013703702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.144429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016224163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.144429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016224163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.144429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016224163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.matsci.37.052506.084259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016375366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.267602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016937074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.267602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016937074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2006.01.238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016965707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.247201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021550704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.247201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021550704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1107559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022363502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/38/8/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024263146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/20/43/434208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025214719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942997", 
          "https://doi.org/10.1038/nmat1804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942997", 
          "https://doi.org/10.1038/nmat1804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.104426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037969611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.104426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037969611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/20/43/434201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040742789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.107204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043185442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.107204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043185442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3sc53248h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044799501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00150193.2012.675272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045833188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/20/43/434203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049033785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050356145", 
          "https://doi.org/10.1038/nature06139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.157208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050594259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.157208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050594259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.205505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052634662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.205505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052634662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(59)90061-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053506069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(59)90061-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053506069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm101441p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055413816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm101441p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055413816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm8018082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055416709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm8018082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055416709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/11/5/028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059064559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.79.350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.79.350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.29.2864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060534211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.29.2864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060534211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.054416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.054416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.132408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.132408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.214425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.214425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.064414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.064414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.165704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.165704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.257202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.257202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.147204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.147204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.137601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.137601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.257203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.257203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1212154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1262118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062470886"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "(Ba/Sr)3NbFe3Si2O14 is a magneto-electric multiferroic with an incommensurate antiferromagnetic spiral magnetic structure which induces electric polarization at 26\u2005K. Structural studies show that both the compounds have similar crystal structure down to 6 K. They exhibit a transition, TN at 26 K and 25 K respectively, as indicated by heat capacity and magnetization, into an antiferromagnetic state. Although Ba and Sr are isovalent, they exhibit very different static and dynamic magnetic behaviors. The Ba-compound exhibits a glassy behavior with critical slowing dynamics with a freezing temperature of ~35 K and a critical exponent of 3.9, a value close to the 3-D Ising model above TN, in addition to the invariant transition into an antiferromagnetic state. The Sr-compound however does not exhibit any dispersive behavior except for the invariant transition at TN. The dielectric constant reflects magnetic behavior of the two compounds: the Ba-compound has two distinct dispersive peaks while the Sr-compound has a single dispersive peak. Thus the compounds exhibit coupled 'multiglass' behavior. The difference in magnetic properties between the two compounds is found to be due to modifications to super exchange path angle and length as well as anti-site defects which stabilize either ferromagnetic or antiferromagnetic interactions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep09751", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Effect of divalent Ba cation substitution with Sr on coupled\n            \u2018multiglass\u2019 state in the magnetoelectric multiferroic compound\n                Ba3NbFe3Si2O14", 
    "pagination": "9751", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "110874d2d1fff86f1ef335a0cf2471f3801cdaed797d2efac7cf8f189c77aa2e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25988657"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep09751"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003575688"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep09751", 
      "https://app.dimensions.ai/details/publication/pub.1003575688"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/150519/srep09751/full/srep09751.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep09751'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep09751'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep09751'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep09751'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      74 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep09751 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author N723f28e85d1e475f9a5acccc9529393b
4 schema:citation sg:pub.10.1038/nature05023
5 sg:pub.10.1038/nature06139
6 sg:pub.10.1038/ncomms3063
7 sg:pub.10.1038/nmat1560
8 sg:pub.10.1038/nmat1804
9 https://doi.org/10.1016/0022-3697(59)90061-7
10 https://doi.org/10.1016/j.jmmm.2006.01.238
11 https://doi.org/10.1021/cm101441p
12 https://doi.org/10.1021/cm8018082
13 https://doi.org/10.1039/c3sc53248h
14 https://doi.org/10.1063/1.4866187
15 https://doi.org/10.1080/00150193.2012.675272
16 https://doi.org/10.1080/00150199408245083
17 https://doi.org/10.1080/00150199408245120
18 https://doi.org/10.1088/0022-3727/38/8/r01
19 https://doi.org/10.1088/0305-4470/11/5/028
20 https://doi.org/10.1088/0953-8984/20/43/434201
21 https://doi.org/10.1088/0953-8984/20/43/434203
22 https://doi.org/10.1088/0953-8984/20/43/434208
23 https://doi.org/10.1088/0953-8984/6/22/001
24 https://doi.org/10.1103/physrev.100.564
25 https://doi.org/10.1103/physrev.79.350
26 https://doi.org/10.1103/physrevb.29.2864
27 https://doi.org/10.1103/physrevb.72.144429
28 https://doi.org/10.1103/physrevb.81.054416
29 https://doi.org/10.1103/physrevb.82.132408
30 https://doi.org/10.1103/physrevb.83.104426
31 https://doi.org/10.1103/physrevb.84.214425
32 https://doi.org/10.1103/physrevb.86.064414
33 https://doi.org/10.1103/physrevb.88.104417
34 https://doi.org/10.1103/physrevlett.101.165704
35 https://doi.org/10.1103/physrevlett.101.247201
36 https://doi.org/10.1103/physrevlett.105.257202
37 https://doi.org/10.1103/physrevlett.106.107204
38 https://doi.org/10.1103/physrevlett.106.147204
39 https://doi.org/10.1103/physrevlett.107.137601
40 https://doi.org/10.1103/physrevlett.107.257203
41 https://doi.org/10.1103/physrevlett.110.157208
42 https://doi.org/10.1103/physrevlett.96.067601
43 https://doi.org/10.1103/physrevlett.96.205505
44 https://doi.org/10.1103/physrevlett.97.267602
45 https://doi.org/10.1126/science.1107559
46 https://doi.org/10.1126/science.1212154
47 https://doi.org/10.1126/science.1262118
48 https://doi.org/10.1146/annurev.matsci.37.052506.084259
49 schema:datePublished 2015-09
50 schema:datePublishedReg 2015-09-01
51 schema:description (Ba/Sr)3NbFe3Si2O14 is a magneto-electric multiferroic with an incommensurate antiferromagnetic spiral magnetic structure which induces electric polarization at 26 K. Structural studies show that both the compounds have similar crystal structure down to 6 K. They exhibit a transition, TN at 26 K and 25 K respectively, as indicated by heat capacity and magnetization, into an antiferromagnetic state. Although Ba and Sr are isovalent, they exhibit very different static and dynamic magnetic behaviors. The Ba-compound exhibits a glassy behavior with critical slowing dynamics with a freezing temperature of ~35 K and a critical exponent of 3.9, a value close to the 3-D Ising model above TN, in addition to the invariant transition into an antiferromagnetic state. The Sr-compound however does not exhibit any dispersive behavior except for the invariant transition at TN. The dielectric constant reflects magnetic behavior of the two compounds: the Ba-compound has two distinct dispersive peaks while the Sr-compound has a single dispersive peak. Thus the compounds exhibit coupled 'multiglass' behavior. The difference in magnetic properties between the two compounds is found to be due to modifications to super exchange path angle and length as well as anti-site defects which stabilize either ferromagnetic or antiferromagnetic interactions.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N661e683153e64e6f91e2e03622b24477
56 N969b88fdb1da4bd0a3e05819db2fd60c
57 sg:journal.1045337
58 schema:name Effect of divalent Ba cation substitution with Sr on coupled ‘multiglass’ state in the magnetoelectric multiferroic compound Ba3NbFe3Si2O14
59 schema:pagination 9751
60 schema:productId N48d167740e924f4a8c6940b898fc8cff
61 N500a10f134704c7fbc59f9145064bf4d
62 N6b21c1295b374d73bbf33a2c5e832182
63 Nae9b60e52e6d4d05992edf68b7e4a544
64 Nc7b5fa6db60d464a9083edc8f8268336
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003575688
66 https://doi.org/10.1038/srep09751
67 schema:sdDatePublished 2019-04-10T16:28
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N94a3366165dc405b9ff450491e4d909e
70 schema:url http://www.nature.com/srep/2015/150519/srep09751/full/srep09751.html
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N0afef50d245344dbb0700b336b88a21d rdf:first sg:person.01325463133.20
75 rdf:rest rdf:nil
76 N48d167740e924f4a8c6940b898fc8cff schema:name dimensions_id
77 schema:value pub.1003575688
78 rdf:type schema:PropertyValue
79 N500a10f134704c7fbc59f9145064bf4d schema:name pubmed_id
80 schema:value 25988657
81 rdf:type schema:PropertyValue
82 N661e683153e64e6f91e2e03622b24477 schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N6b21c1295b374d73bbf33a2c5e832182 schema:name readcube_id
85 schema:value 110874d2d1fff86f1ef335a0cf2471f3801cdaed797d2efac7cf8f189c77aa2e
86 rdf:type schema:PropertyValue
87 N723f28e85d1e475f9a5acccc9529393b rdf:first sg:person.01322312641.17
88 rdf:rest N0afef50d245344dbb0700b336b88a21d
89 N94a3366165dc405b9ff450491e4d909e schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N969b88fdb1da4bd0a3e05819db2fd60c schema:volumeNumber 5
92 rdf:type schema:PublicationVolume
93 Nae9b60e52e6d4d05992edf68b7e4a544 schema:name nlm_unique_id
94 schema:value 101563288
95 rdf:type schema:PropertyValue
96 Nc7b5fa6db60d464a9083edc8f8268336 schema:name doi
97 schema:value 10.1038/srep09751
98 rdf:type schema:PropertyValue
99 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
100 schema:name Chemical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
103 schema:name Inorganic Chemistry
104 rdf:type schema:DefinedTerm
105 sg:journal.1045337 schema:issn 2045-2322
106 schema:name Scientific Reports
107 rdf:type schema:Periodical
108 sg:person.01322312641.17 schema:affiliation https://www.grid.ac/institutes/grid.417971.d
109 schema:familyName Rathore
110 schema:givenName Satyapal Singh
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322312641.17
112 rdf:type schema:Person
113 sg:person.01325463133.20 schema:affiliation https://www.grid.ac/institutes/grid.417971.d
114 schema:familyName Vitta
115 schema:givenName Satish
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325463133.20
117 rdf:type schema:Person
118 sg:pub.10.1038/nature05023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012273606
119 https://doi.org/10.1038/nature05023
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature06139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050356145
122 https://doi.org/10.1038/nature06139
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/ncomms3063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006047602
125 https://doi.org/10.1038/ncomms3063
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nmat1560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013420111
128 https://doi.org/10.1038/nmat1560
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nmat1804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942997
131 https://doi.org/10.1038/nmat1804
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0022-3697(59)90061-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053506069
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jmmm.2006.01.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016965707
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/cm101441p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055413816
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1021/cm8018082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055416709
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1039/c3sc53248h schema:sameAs https://app.dimensions.ai/details/publication/pub.1044799501
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.4866187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000808811
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/00150193.2012.675272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045833188
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1080/00150199408245083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006622456
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1080/00150199408245120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006306688
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1088/0022-3727/38/8/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024263146
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1088/0305-4470/11/5/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059064559
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/0953-8984/20/43/434201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040742789
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/0953-8984/20/43/434203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049033785
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1088/0953-8984/20/43/434208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025214719
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1088/0953-8984/6/22/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703702
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrev.100.564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060416829
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrev.79.350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060456497
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevb.29.2864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060534211
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevb.72.144429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016224163
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevb.81.054416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631567
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.82.132408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633856
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.83.104426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037969611
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevb.84.214425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060637608
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevb.86.064414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060639641
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.88.104417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011640914
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.101.165704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754225
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.101.247201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021550704
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.105.257202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757791
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.106.107204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043185442
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.106.147204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060758170
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.107.137601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060758808
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.107.257203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759181
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.110.157208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050594259
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.96.067601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003273940
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.96.205505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052634662
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.97.267602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016937074
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1126/science.1107559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022363502
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1126/science.1212154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465552
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1126/science.1262118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470886
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1146/annurev.matsci.37.052506.084259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016375366
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.417971.d schema:alternateName Indian Institute of Technology Bombay
214 schema:name Indian Institute of Technology Bombay, Mumbai 400076, India
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...