Parametric excitation of multiple resonant radiations from localized wavepackets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-03-24

AUTHORS

Matteo Conforti, Stefano Trillo, Arnaud Mussot, Alexandre Kudlinski

ABSTRACT

Fundamental physical phenomena such as laser-induced ionization, driven quantum tunneling, Faraday waves, Bogoliubov quasiparticle excitations and the control of new states of matter rely on time-periodic driving of the system. A remarkable property of such driving is that it can induce the localized (bound) states to resonantly couple to the continuum. Therefore experiments that allow for enlightening and controlling the mechanisms underlying such coupling are of paramount importance. We implement such an experiment in a special optical fiber characterized by a dispersion oscillating along the propagation coordinate, which mimics “time”. The quasi-momentum associated with such periodic perturbation is responsible for the efficient coupling of energy from the localized wave-packets (solitons in anomalous dispersion and shock fronts in normal dispersion) sustained by the fiber nonlinearity, into free-running linear dispersive waves (continuum) at multiple resonant frequencies. Remarkably, the observed resonances can be explained by means of a unified approach, regardless of the fact that the localized state is a soliton-like pulse or a shock front. More... »

PAGES

9433

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep09433

DOI

http://dx.doi.org/10.1038/srep09433

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010032180

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25801054


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "PhLAM/IRCICA, CNRS-Universit\u00e9 Lille 1, UMR 8523/USR 3380, F-59655, Villeneuve d'Ascq, France", 
          "id": "http://www.grid.ac/institutes/grid.503422.2", 
          "name": [
            "PhLAM/IRCICA, CNRS-Universit\u00e9 Lille 1, UMR 8523/USR 3380, F-59655, Villeneuve d'Ascq, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conforti", 
        "givenName": "Matteo", 
        "id": "sg:person.0764653251.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764653251.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Ingegneria, Universit\u00e0 di Ferrara, Via Saragat 1, 44122, Ferrara, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8484.0", 
          "name": [
            "Dipartimento di Ingegneria, Universit\u00e0 di Ferrara, Via Saragat 1, 44122, Ferrara, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trillo", 
        "givenName": "Stefano", 
        "id": "sg:person.01242414260.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242414260.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "PhLAM/IRCICA, CNRS-Universit\u00e9 Lille 1, UMR 8523/USR 3380, F-59655, Villeneuve d'Ascq, France", 
          "id": "http://www.grid.ac/institutes/grid.503422.2", 
          "name": [
            "PhLAM/IRCICA, CNRS-Universit\u00e9 Lille 1, UMR 8523/USR 3380, F-59655, Villeneuve d'Ascq, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mussot", 
        "givenName": "Arnaud", 
        "id": "sg:person.01231032443.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231032443.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "PhLAM/IRCICA, CNRS-Universit\u00e9 Lille 1, UMR 8523/USR 3380, F-59655, Villeneuve d'Ascq, France", 
          "id": "http://www.grid.ac/institutes/grid.503422.2", 
          "name": [
            "PhLAM/IRCICA, CNRS-Universit\u00e9 Lille 1, UMR 8523/USR 3380, F-59655, Villeneuve d'Ascq, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudlinski", 
        "givenName": "Alexandre", 
        "id": "sg:person.01245750522.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245750522.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2010.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029972917", 
          "https://doi.org/10.1038/nphoton.2010.122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034205718", 
          "https://doi.org/10.1038/nphys486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012462850", 
          "https://doi.org/10.1038/nphoton.2008.285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041781555", 
          "https://doi.org/10.1038/nphys1926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep02219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000334245", 
          "https://doi.org/10.1038/srep02219"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-03-24", 
    "datePublishedReg": "2015-03-24", 
    "description": "Fundamental physical phenomena such as laser-induced ionization, driven quantum tunneling, Faraday waves, Bogoliubov quasiparticle excitations and the control of new states of matter rely on time-periodic driving of the system. A remarkable property of such driving is that it can induce the localized (bound) states to resonantly couple to the continuum. Therefore experiments that allow for enlightening and controlling the mechanisms underlying such coupling are of paramount importance. We implement such an experiment in a special optical fiber characterized by a dispersion oscillating along the propagation coordinate, which mimics \u201ctime\u201d. The quasi-momentum associated with such periodic perturbation is responsible for the efficient coupling of energy from the localized wave-packets (solitons in anomalous dispersion and shock fronts in normal dispersion) sustained by the fiber nonlinearity, into free-running linear dispersive waves (continuum) at multiple resonant frequencies. Remarkably, the observed resonances can be explained by means of a unified approach, regardless of the fact that the localized state is a soliton-like pulse or a shock front.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep09433", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6859272", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "laser-induced ionization", 
      "soliton-like pulses", 
      "special optical fiber", 
      "Bogoliubov quasiparticle excitations", 
      "time-periodic driving", 
      "fundamental physical phenomena", 
      "linear dispersive waves", 
      "resonant radiation", 
      "quantum tunneling", 
      "quasiparticle excitations", 
      "optical fiber", 
      "such periodic perturbations", 
      "fiber nonlinearity", 
      "observed resonances", 
      "dispersive waves", 
      "efficient coupling", 
      "shock front", 
      "Faraday waves", 
      "parametric excitation", 
      "multiple resonant frequencies", 
      "physical phenomena", 
      "unified approach", 
      "excitation", 
      "such coupling", 
      "periodic perturbation", 
      "such driving", 
      "new state", 
      "remarkable properties", 
      "resonant frequency", 
      "waves", 
      "coupling", 
      "wavepacket", 
      "ionization", 
      "tunneling", 
      "pulses", 
      "state", 
      "radiation", 
      "resonance", 
      "energy", 
      "dispersion", 
      "nonlinearity", 
      "continuum", 
      "experiments", 
      "propagation", 
      "perturbations", 
      "matter", 
      "properties", 
      "fibers", 
      "phenomenon", 
      "frequency", 
      "driving", 
      "front", 
      "paramount importance", 
      "approach", 
      "system", 
      "means", 
      "fact", 
      "control", 
      "time", 
      "mechanism", 
      "importance", 
      "mimics"
    ], 
    "name": "Parametric excitation of multiple resonant radiations from localized wavepackets", 
    "pagination": "9433", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010032180"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep09433"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25801054"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep09433", 
      "https://app.dimensions.ai/details/publication/pub.1010032180"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_661.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep09433"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep09433'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep09433'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep09433'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep09433'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      92 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep09433 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N00b76a2ba3814465b24dd46439f09124
4 schema:citation sg:pub.10.1038/nphoton.2008.285
5 sg:pub.10.1038/nphoton.2010.122
6 sg:pub.10.1038/nphys1926
7 sg:pub.10.1038/nphys486
8 sg:pub.10.1038/srep02219
9 schema:datePublished 2015-03-24
10 schema:datePublishedReg 2015-03-24
11 schema:description Fundamental physical phenomena such as laser-induced ionization, driven quantum tunneling, Faraday waves, Bogoliubov quasiparticle excitations and the control of new states of matter rely on time-periodic driving of the system. A remarkable property of such driving is that it can induce the localized (bound) states to resonantly couple to the continuum. Therefore experiments that allow for enlightening and controlling the mechanisms underlying such coupling are of paramount importance. We implement such an experiment in a special optical fiber characterized by a dispersion oscillating along the propagation coordinate, which mimics “time”. The quasi-momentum associated with such periodic perturbation is responsible for the efficient coupling of energy from the localized wave-packets (solitons in anomalous dispersion and shock fronts in normal dispersion) sustained by the fiber nonlinearity, into free-running linear dispersive waves (continuum) at multiple resonant frequencies. Remarkably, the observed resonances can be explained by means of a unified approach, regardless of the fact that the localized state is a soliton-like pulse or a shock front.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N2f5b82b035144d2498d88580463a320c
15 N88253386d016477e80b91b50d0df6e7d
16 sg:journal.1045337
17 schema:keywords Bogoliubov quasiparticle excitations
18 Faraday waves
19 approach
20 continuum
21 control
22 coupling
23 dispersion
24 dispersive waves
25 driving
26 efficient coupling
27 energy
28 excitation
29 experiments
30 fact
31 fiber nonlinearity
32 fibers
33 frequency
34 front
35 fundamental physical phenomena
36 importance
37 ionization
38 laser-induced ionization
39 linear dispersive waves
40 matter
41 means
42 mechanism
43 mimics
44 multiple resonant frequencies
45 new state
46 nonlinearity
47 observed resonances
48 optical fiber
49 parametric excitation
50 paramount importance
51 periodic perturbation
52 perturbations
53 phenomenon
54 physical phenomena
55 propagation
56 properties
57 pulses
58 quantum tunneling
59 quasiparticle excitations
60 radiation
61 remarkable properties
62 resonance
63 resonant frequency
64 resonant radiation
65 shock front
66 soliton-like pulses
67 special optical fiber
68 state
69 such coupling
70 such driving
71 such periodic perturbations
72 system
73 time
74 time-periodic driving
75 tunneling
76 unified approach
77 wavepacket
78 waves
79 schema:name Parametric excitation of multiple resonant radiations from localized wavepackets
80 schema:pagination 9433
81 schema:productId N055409ee2218495eb88f8b681e05f9f5
82 Nc5ea7aefdbcd4baa9adc24f650daf9e3
83 Nd1d75380fea647ad8db21bec40563418
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010032180
85 https://doi.org/10.1038/srep09433
86 schema:sdDatePublished 2022-12-01T06:33
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Nbdc552f367254ebe8e8d14bbf2631a95
89 schema:url https://doi.org/10.1038/srep09433
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N00b76a2ba3814465b24dd46439f09124 rdf:first sg:person.0764653251.31
94 rdf:rest Nbfd4025d2b1a4c5eb9465de7d151a9ca
95 N055409ee2218495eb88f8b681e05f9f5 schema:name pubmed_id
96 schema:value 25801054
97 rdf:type schema:PropertyValue
98 N2f5b82b035144d2498d88580463a320c schema:volumeNumber 5
99 rdf:type schema:PublicationVolume
100 N50fc923cd0694dd18e5f18b0a1961d25 rdf:first sg:person.01245750522.31
101 rdf:rest rdf:nil
102 N88253386d016477e80b91b50d0df6e7d schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 Nbdc552f367254ebe8e8d14bbf2631a95 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nbfd4025d2b1a4c5eb9465de7d151a9ca rdf:first sg:person.01242414260.33
107 rdf:rest Nfe2cb7ac856848528b8f851457dae8ab
108 Nc5ea7aefdbcd4baa9adc24f650daf9e3 schema:name doi
109 schema:value 10.1038/srep09433
110 rdf:type schema:PropertyValue
111 Nd1d75380fea647ad8db21bec40563418 schema:name dimensions_id
112 schema:value pub.1010032180
113 rdf:type schema:PropertyValue
114 Nfe2cb7ac856848528b8f851457dae8ab rdf:first sg:person.01231032443.88
115 rdf:rest N50fc923cd0694dd18e5f18b0a1961d25
116 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
120 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
121 rdf:type schema:DefinedTerm
122 sg:grant.6859272 http://pending.schema.org/fundedItem sg:pub.10.1038/srep09433
123 rdf:type schema:MonetaryGrant
124 sg:journal.1045337 schema:issn 2045-2322
125 schema:name Scientific Reports
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.01231032443.88 schema:affiliation grid-institutes:grid.503422.2
129 schema:familyName Mussot
130 schema:givenName Arnaud
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231032443.88
132 rdf:type schema:Person
133 sg:person.01242414260.33 schema:affiliation grid-institutes:grid.8484.0
134 schema:familyName Trillo
135 schema:givenName Stefano
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242414260.33
137 rdf:type schema:Person
138 sg:person.01245750522.31 schema:affiliation grid-institutes:grid.503422.2
139 schema:familyName Kudlinski
140 schema:givenName Alexandre
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245750522.31
142 rdf:type schema:Person
143 sg:person.0764653251.31 schema:affiliation grid-institutes:grid.503422.2
144 schema:familyName Conforti
145 schema:givenName Matteo
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764653251.31
147 rdf:type schema:Person
148 sg:pub.10.1038/nphoton.2008.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012462850
149 https://doi.org/10.1038/nphoton.2008.285
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nphoton.2010.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029972917
152 https://doi.org/10.1038/nphoton.2010.122
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nphys1926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041781555
155 https://doi.org/10.1038/nphys1926
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nphys486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034205718
158 https://doi.org/10.1038/nphys486
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/srep02219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000334245
161 https://doi.org/10.1038/srep02219
162 rdf:type schema:CreativeWork
163 grid-institutes:grid.503422.2 schema:alternateName PhLAM/IRCICA, CNRS-Université Lille 1, UMR 8523/USR 3380, F-59655, Villeneuve d'Ascq, France
164 schema:name PhLAM/IRCICA, CNRS-Université Lille 1, UMR 8523/USR 3380, F-59655, Villeneuve d'Ascq, France
165 rdf:type schema:Organization
166 grid-institutes:grid.8484.0 schema:alternateName Dipartimento di Ingegneria, Università di Ferrara, Via Saragat 1, 44122, Ferrara, Italy
167 schema:name Dipartimento di Ingegneria, Università di Ferrara, Via Saragat 1, 44122, Ferrara, Italy
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...