Implications of the causality principle for ultra chiral metamaterials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-08

AUTHORS

Maxim V. Gorkunov, Vladimir E. Dmitrienko, Alexander A. Ezhov, Vladimir V. Artemov, Oleg Y. Rogov

ABSTRACT

Chiral metamaterials - artificial subwavelength structures with broken mirror symmetry - demonstrate outstanding degree of optical chirality that exhibits sophisticated spectral behavior and can eventually reach extreme values. Based on the fundamental causality principle we show how one can unambiguously relate the metamaterial circular dichroism and optical activity by the generalized Kramers-Kronig relations. Contrary to the conventional relations, the generalized ones provide a unique opportunity of extracting information on material-dependent zeroes of transmission coefficient in the upper half plane of complex frequency. We illustrate the merit of the formulated relations by applying them to the observed ultra chiral optical transmission spectra of subwavelength arrays of chiral holes in silver films. Apart from the possibility of precise verification of experimental data, the relations enable resolving complex eigenfrequencies of metamaterial intrinsic modes and resonances. More... »

PAGES

9273

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep09273

DOI

http://dx.doi.org/10.1038/srep09273

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023353546

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25787007


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, 119333 Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorkunov", 
        "givenName": "Maxim V.", 
        "id": "sg:person.011067165125.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011067165125.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, 119333 Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dmitrienko", 
        "givenName": "Vladimir E.", 
        "id": "sg:person.0742761172.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742761172.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, 119333 Moscow, Russia", 
            "M. V. Lomonosov Moscow State University, 119991 Moscow, Russia", 
            "A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Science, 119991 Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezhov", 
        "givenName": "Alexander A.", 
        "id": "sg:person.01230763763.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230763763.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, 119333 Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Artemov", 
        "givenName": "Vladimir V.", 
        "id": "sg:person.014543331362.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543331362.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, 119333 Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogov", 
        "givenName": "Oleg Y.", 
        "id": "sg:person.010124453457.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010124453457.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physics.2.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001460322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physics.2.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001460322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009070506", 
          "https://doi.org/10.1038/ncomms1805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.4.001275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010332627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.125105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018259744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.125105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018259744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4880798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024103381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2009.03.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026874965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029183724", 
          "https://doi.org/10.1038/ncomms5441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4876964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031046050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.177401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.177401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037340197", 
          "https://doi.org/10.1038/nature05350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037340197", 
          "https://doi.org/10.1038/nature05350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.1267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039009392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.1267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039009392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040194121", 
          "https://doi.org/10.1038/ncomms1877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042067373", 
          "https://doi.org/10.1038/nnano.2010.209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042067373", 
          "https://doi.org/10.1038/nnano.2010.209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201205178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042844906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/72/5/056401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043230297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/72/5/056401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043230297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044123503", 
          "https://doi.org/10.1038/nphoton.2013.233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045070059", 
          "https://doi.org/10.1038/ncomms1908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr02666c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047425154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp1:1991199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056973656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4829740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058086080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.104.1760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.104.1760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.89.1072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.89.1072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.075106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.075106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.032506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.032506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.026012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065201858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.35.001593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065228617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511735271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667094"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-08", 
    "datePublishedReg": "2015-08-01", 
    "description": "Chiral metamaterials - artificial subwavelength structures with broken mirror symmetry - demonstrate outstanding degree of optical chirality that exhibits sophisticated spectral behavior and can eventually reach extreme values. Based on the fundamental causality principle we show how one can unambiguously relate the metamaterial circular dichroism and optical activity by the generalized Kramers-Kronig relations. Contrary to the conventional relations, the generalized ones provide a unique opportunity of extracting information on material-dependent zeroes of transmission coefficient in the upper half plane of complex frequency. We illustrate the merit of the formulated relations by applying them to the observed ultra chiral optical transmission spectra of subwavelength arrays of chiral holes in silver films. Apart from the possibility of precise verification of experimental data, the relations enable resolving complex eigenfrequencies of metamaterial intrinsic modes and resonances. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep09273", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4897430", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Implications of the causality principle for ultra chiral metamaterials", 
    "pagination": "9273", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f434e90e637184da11ec40979c41143a5df7852ce22aad108cb5b9495ed36b7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25787007"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep09273"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023353546"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep09273", 
      "https://app.dimensions.ai/details/publication/pub.1023353546"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/150319/srep09273/full/srep09273.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep09273'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep09273'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep09273'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep09273'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep09273 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N3d6ebf642d24445d9c83d4b770518a1b
4 schema:citation sg:pub.10.1038/nature05350
5 sg:pub.10.1038/ncomms1805
6 sg:pub.10.1038/ncomms1877
7 sg:pub.10.1038/ncomms1908
8 sg:pub.10.1038/ncomms5441
9 sg:pub.10.1038/nnano.2010.209
10 sg:pub.10.1038/nphoton.2013.233
11 https://doi.org/10.1002/adma.201205178
12 https://doi.org/10.1016/j.physb.2009.03.040
13 https://doi.org/10.1017/cbo9780511735271
14 https://doi.org/10.1039/c3nr02666c
15 https://doi.org/10.1051/jp1:1991199
16 https://doi.org/10.1063/1.4829740
17 https://doi.org/10.1063/1.4876964
18 https://doi.org/10.1063/1.4880798
19 https://doi.org/10.1088/0034-4885/72/5/056401
20 https://doi.org/10.1103/physics.2.3
21 https://doi.org/10.1103/physrev.104.1760
22 https://doi.org/10.1103/physrev.89.1072
23 https://doi.org/10.1103/physrevb.77.075106
24 https://doi.org/10.1103/physrevb.89.125105
25 https://doi.org/10.1103/physreve.87.032506
26 https://doi.org/10.1103/physrevlett.97.177401
27 https://doi.org/10.1103/revmodphys.79.1267
28 https://doi.org/10.1364/ao.4.001275
29 https://doi.org/10.1364/oe.20.026012
30 https://doi.org/10.1364/ol.35.001593
31 schema:datePublished 2015-08
32 schema:datePublishedReg 2015-08-01
33 schema:description Chiral metamaterials - artificial subwavelength structures with broken mirror symmetry - demonstrate outstanding degree of optical chirality that exhibits sophisticated spectral behavior and can eventually reach extreme values. Based on the fundamental causality principle we show how one can unambiguously relate the metamaterial circular dichroism and optical activity by the generalized Kramers-Kronig relations. Contrary to the conventional relations, the generalized ones provide a unique opportunity of extracting information on material-dependent zeroes of transmission coefficient in the upper half plane of complex frequency. We illustrate the merit of the formulated relations by applying them to the observed ultra chiral optical transmission spectra of subwavelength arrays of chiral holes in silver films. Apart from the possibility of precise verification of experimental data, the relations enable resolving complex eigenfrequencies of metamaterial intrinsic modes and resonances.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N568e214cb37a4ac9951134d58189d8b5
38 N7084c327ae5a4033a08f93a7285ca7bf
39 sg:journal.1045337
40 schema:name Implications of the causality principle for ultra chiral metamaterials
41 schema:pagination 9273
42 schema:productId N638807222beb410fb17d69c0b6255de2
43 N92b26eb2fe0548e3b83e30b5c1c2d619
44 N9a62fd7dd4294ad1a2a8c8459c1050d5
45 Nd61615d61cbf4b4ab351e74cce1aef04
46 Nf0e90a45739a4030966be600a94df3aa
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023353546
48 https://doi.org/10.1038/srep09273
49 schema:sdDatePublished 2019-04-10T22:19
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Na3e43c8aac734a4c984110f6e728eb65
52 schema:url http://www.nature.com/srep/2015/150319/srep09273/full/srep09273.html
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0fa51c2b176848a7acaaae3d6561e429 rdf:first sg:person.010124453457.00
57 rdf:rest rdf:nil
58 N3d6ebf642d24445d9c83d4b770518a1b rdf:first sg:person.011067165125.54
59 rdf:rest Nd8ba22999d8a4dcba3d1bdf292524282
60 N568e214cb37a4ac9951134d58189d8b5 schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N638807222beb410fb17d69c0b6255de2 schema:name pubmed_id
63 schema:value 25787007
64 rdf:type schema:PropertyValue
65 N7084c327ae5a4033a08f93a7285ca7bf schema:volumeNumber 5
66 rdf:type schema:PublicationVolume
67 N92b26eb2fe0548e3b83e30b5c1c2d619 schema:name nlm_unique_id
68 schema:value 101563288
69 rdf:type schema:PropertyValue
70 N9a62fd7dd4294ad1a2a8c8459c1050d5 schema:name dimensions_id
71 schema:value pub.1023353546
72 rdf:type schema:PropertyValue
73 Na3e43c8aac734a4c984110f6e728eb65 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nd5d134e05bed4f85a30096d0adf0bb5c rdf:first sg:person.01230763763.87
76 rdf:rest Nfcc1fa6e2d62435480e44de2d7ba5682
77 Nd61615d61cbf4b4ab351e74cce1aef04 schema:name doi
78 schema:value 10.1038/srep09273
79 rdf:type schema:PropertyValue
80 Nd8ba22999d8a4dcba3d1bdf292524282 rdf:first sg:person.0742761172.43
81 rdf:rest Nd5d134e05bed4f85a30096d0adf0bb5c
82 Nf0e90a45739a4030966be600a94df3aa schema:name readcube_id
83 schema:value 6f434e90e637184da11ec40979c41143a5df7852ce22aad108cb5b9495ed36b7
84 rdf:type schema:PropertyValue
85 Nfcc1fa6e2d62435480e44de2d7ba5682 rdf:first sg:person.014543331362.87
86 rdf:rest N0fa51c2b176848a7acaaae3d6561e429
87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
88 schema:name Physical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
91 schema:name Optical Physics
92 rdf:type schema:DefinedTerm
93 sg:grant.4897430 http://pending.schema.org/fundedItem sg:pub.10.1038/srep09273
94 rdf:type schema:MonetaryGrant
95 sg:journal.1045337 schema:issn 2045-2322
96 schema:name Scientific Reports
97 rdf:type schema:Periodical
98 sg:person.010124453457.00 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
99 schema:familyName Rogov
100 schema:givenName Oleg Y.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010124453457.00
102 rdf:type schema:Person
103 sg:person.011067165125.54 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
104 schema:familyName Gorkunov
105 schema:givenName Maxim V.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011067165125.54
107 rdf:type schema:Person
108 sg:person.01230763763.87 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
109 schema:familyName Ezhov
110 schema:givenName Alexander A.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230763763.87
112 rdf:type schema:Person
113 sg:person.014543331362.87 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
114 schema:familyName Artemov
115 schema:givenName Vladimir V.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543331362.87
117 rdf:type schema:Person
118 sg:person.0742761172.43 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
119 schema:familyName Dmitrienko
120 schema:givenName Vladimir E.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742761172.43
122 rdf:type schema:Person
123 sg:pub.10.1038/nature05350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037340197
124 https://doi.org/10.1038/nature05350
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/ncomms1805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009070506
127 https://doi.org/10.1038/ncomms1805
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/ncomms1877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040194121
130 https://doi.org/10.1038/ncomms1877
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/ncomms1908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045070059
133 https://doi.org/10.1038/ncomms1908
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/ncomms5441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029183724
136 https://doi.org/10.1038/ncomms5441
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nnano.2010.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042067373
139 https://doi.org/10.1038/nnano.2010.209
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nphoton.2013.233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044123503
142 https://doi.org/10.1038/nphoton.2013.233
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/adma.201205178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042844906
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.physb.2009.03.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026874965
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1017/cbo9780511735271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667094
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1039/c3nr02666c schema:sameAs https://app.dimensions.ai/details/publication/pub.1047425154
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1051/jp1:1991199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056973656
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.4829740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058086080
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.4876964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031046050
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1063/1.4880798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024103381
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1088/0034-4885/72/5/056401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043230297
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physics.2.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001460322
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrev.104.1760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418178
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrev.89.1072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060460087
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.77.075106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060623862
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevb.89.125105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018259744
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physreve.87.032506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060744614
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.97.177401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304529
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/revmodphys.79.1267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039009392
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1364/ao.4.001275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010332627
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1364/oe.20.026012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065201858
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1364/ol.35.001593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065228617
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.423490.8 schema:alternateName A.V.Topchiev Institute of Petrochemical Synthesis
185 schema:name A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, 119333 Moscow, Russia
186 A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Science, 119991 Moscow, Russia
187 M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
190 schema:name A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, 119333 Moscow, Russia
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...