Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02-10

AUTHORS

F. Kametani, J. Jiang, M. Matras, D. Abraimov, E. E. Hellstrom, D. C. Larbalestier

ABSTRACT

Why Bi(2)Sr(2)CaCu(2)Ox (Bi2212) allows high critical current density Jc in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10)), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM <15°) while simultaneously allowing the c-axes of its polycrystals to rotate azimuthally along and about the filament axis so as to generate macroscopically isotropic behavior. By contrast Bi2223 shows only a uniaxial (FWHM <15°) c-axis texture perpendicular to the tape plane without any in-plane texture. Consistent with these observations, a marked, field-increasing, field-decreasing J(c)(H) hysteresis characteristic of weak-linked systems appears in Bi2223 but is absent in Bi2212 round wire. Growth-induced texture on cooling from the melt step of the Bi2212 J(c) optimization process appears to be the key step in generating this highly desirable microstructure. More... »

PAGES

8285

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep08285

DOI

http://dx.doi.org/10.1038/srep08285

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039033796

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25666114


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kametani", 
        "givenName": "F.", 
        "id": "sg:person.01241160331.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241160331.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "J.", 
        "id": "sg:person.01154110202.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matras", 
        "givenName": "M.", 
        "id": "sg:person.0751170420.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751170420.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abraimov", 
        "givenName": "D.", 
        "id": "sg:person.012250001247.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012250001247.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellstrom", 
        "givenName": "E. E.", 
        "id": "sg:person.0632002631.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larbalestier", 
        "givenName": "D. C.", 
        "id": "sg:person.013512370724.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512370724.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35104654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000028211", 
          "https://doi.org/10.1038/35104654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/31907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014467635", 
          "https://doi.org/10.1038/31907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040569358", 
          "https://doi.org/10.1038/nphys540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040651649", 
          "https://doi.org/10.1038/nmat3887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2005.0262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025969754", 
          "https://doi.org/10.1557/jmr.2005.0262"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02-10", 
    "datePublishedReg": "2015-02-10", 
    "description": "Why Bi(2)Sr(2)CaCu(2)Ox (Bi2212) allows high critical current density Jc in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10)), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM <15\u00b0) while simultaneously allowing the c-axes of its polycrystals to rotate azimuthally along and about the filament axis so as to generate macroscopically isotropic behavior. By contrast Bi2223 shows only a uniaxial (FWHM <15\u00b0) c-axis texture perpendicular to the tape plane without any in-plane texture. Consistent with these observations, a marked, field-increasing, field-decreasing J(c)(H) hysteresis characteristic of weak-linked systems appears in Bi2223 but is absent in Bi2212 round wire. Growth-induced texture on cooling from the melt step of the Bi2212 J(c) optimization process appears to be the key step in generating this highly desirable microstructure.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep08285", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4321752", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3479346", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "high critical current density Jc", 
      "round wires", 
      "growth texture", 
      "critical current density Jc", 
      "high temperature superconductors", 
      "desirable microstructure", 
      "current density Jc", 
      "biaxial texture", 
      "plane texture", 
      "tape form", 
      "texture perpendicular", 
      "magnet applications", 
      "isotropic behavior", 
      "temperature superconductors", 
      "hysteresis characteristics", 
      "optimization process", 
      "local texture", 
      "tape plane", 
      "wire", 
      "texture", 
      "microstructure", 
      "density development", 
      "Jc", 
      "Bi2223", 
      "Bi2212", 
      "polycrystals", 
      "superconductors", 
      "perpendicular", 
      "applications", 
      "step", 
      "behavior", 
      "plane", 
      "characteristics", 
      "process", 
      "system", 
      "axes", 
      "key step", 
      "comparison", 
      "filaments", 
      "observations", 
      "development", 
      "state", 
      "form", 
      "relation", 
      "density Jc", 
      "anisotropic tape form", 
      "future magnet applications", 
      "art Bi2212", 
      "round wire Bi2212", 
      "wire Bi2212", 
      "axis growth texture", 
      "local biaxial texture", 
      "contrast Bi2223", 
      "axis texture perpendicular", 
      "weak-linked systems", 
      "Growth-induced texture", 
      "melt step", 
      "high critical current density development", 
      "critical current density development", 
      "current density development"
    ], 
    "name": "Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development", 
    "pagination": "8285", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039033796"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep08285"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25666114"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep08285", 
      "https://app.dimensions.ai/details/publication/pub.1039033796"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_669.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep08285"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep08285'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep08285'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep08285'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep08285'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      22 PREDICATES      91 URIs      78 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep08285 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ndad3d3748f954f0680ee7973aa9af72b
4 schema:citation sg:pub.10.1038/31907
5 sg:pub.10.1038/35104654
6 sg:pub.10.1038/nmat3887
7 sg:pub.10.1038/nphys540
8 sg:pub.10.1557/jmr.2005.0262
9 schema:datePublished 2015-02-10
10 schema:datePublishedReg 2015-02-10
11 schema:description Why Bi(2)Sr(2)CaCu(2)Ox (Bi2212) allows high critical current density Jc in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10)), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM <15°) while simultaneously allowing the c-axes of its polycrystals to rotate azimuthally along and about the filament axis so as to generate macroscopically isotropic behavior. By contrast Bi2223 shows only a uniaxial (FWHM <15°) c-axis texture perpendicular to the tape plane without any in-plane texture. Consistent with these observations, a marked, field-increasing, field-decreasing J(c)(H) hysteresis characteristic of weak-linked systems appears in Bi2223 but is absent in Bi2212 round wire. Growth-induced texture on cooling from the melt step of the Bi2212 J(c) optimization process appears to be the key step in generating this highly desirable microstructure.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N7db936959d0248f09ac384a0791250df
16 Nc430515f5571448a8fc3775a3ade963f
17 sg:journal.1045337
18 schema:keywords Bi2212
19 Bi2223
20 Growth-induced texture
21 Jc
22 anisotropic tape form
23 applications
24 art Bi2212
25 axes
26 axis growth texture
27 axis texture perpendicular
28 behavior
29 biaxial texture
30 characteristics
31 comparison
32 contrast Bi2223
33 critical current density Jc
34 critical current density development
35 current density Jc
36 current density development
37 density Jc
38 density development
39 desirable microstructure
40 development
41 filaments
42 form
43 future magnet applications
44 growth texture
45 high critical current density Jc
46 high critical current density development
47 high temperature superconductors
48 hysteresis characteristics
49 isotropic behavior
50 key step
51 local biaxial texture
52 local texture
53 magnet applications
54 melt step
55 microstructure
56 observations
57 optimization process
58 perpendicular
59 plane
60 plane texture
61 polycrystals
62 process
63 relation
64 round wire Bi2212
65 round wires
66 state
67 step
68 superconductors
69 system
70 tape form
71 tape plane
72 temperature superconductors
73 texture
74 texture perpendicular
75 weak-linked systems
76 wire
77 wire Bi2212
78 schema:name Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development
79 schema:pagination 8285
80 schema:productId N25069641fdc7404f8fc3812095ca894b
81 Nc6df1d875adb42b7a083e1a1bee9dacb
82 Nfc236ff236e44fddb4dbfb9f92c230dd
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039033796
84 https://doi.org/10.1038/srep08285
85 schema:sdDatePublished 2021-12-01T19:33
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N99af6829d586429190eaaf3e58a2a2ad
88 schema:url https://doi.org/10.1038/srep08285
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N25069641fdc7404f8fc3812095ca894b schema:name pubmed_id
93 schema:value 25666114
94 rdf:type schema:PropertyValue
95 N6972401235f94faa8bab4be811192d44 rdf:first sg:person.01154110202.55
96 rdf:rest Nb8ee1b9d138346cd9f0f9d2c2d7465b1
97 N7b54edd70f584978a70650cdb973cfb3 rdf:first sg:person.0632002631.91
98 rdf:rest Nd477f17e89b344f782edca80b0be59bb
99 N7db936959d0248f09ac384a0791250df schema:volumeNumber 5
100 rdf:type schema:PublicationVolume
101 N93a20d78e1774787ae5c51d36080ce17 rdf:first sg:person.012250001247.97
102 rdf:rest N7b54edd70f584978a70650cdb973cfb3
103 N99af6829d586429190eaaf3e58a2a2ad schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Nb8ee1b9d138346cd9f0f9d2c2d7465b1 rdf:first sg:person.0751170420.11
106 rdf:rest N93a20d78e1774787ae5c51d36080ce17
107 Nc430515f5571448a8fc3775a3ade963f schema:issueNumber 1
108 rdf:type schema:PublicationIssue
109 Nc6df1d875adb42b7a083e1a1bee9dacb schema:name doi
110 schema:value 10.1038/srep08285
111 rdf:type schema:PropertyValue
112 Nd477f17e89b344f782edca80b0be59bb rdf:first sg:person.013512370724.92
113 rdf:rest rdf:nil
114 Ndad3d3748f954f0680ee7973aa9af72b rdf:first sg:person.01241160331.01
115 rdf:rest N6972401235f94faa8bab4be811192d44
116 Nfc236ff236e44fddb4dbfb9f92c230dd schema:name dimensions_id
117 schema:value pub.1039033796
118 rdf:type schema:PropertyValue
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
123 schema:name Materials Engineering
124 rdf:type schema:DefinedTerm
125 sg:grant.3479346 http://pending.schema.org/fundedItem sg:pub.10.1038/srep08285
126 rdf:type schema:MonetaryGrant
127 sg:grant.4321752 http://pending.schema.org/fundedItem sg:pub.10.1038/srep08285
128 rdf:type schema:MonetaryGrant
129 sg:journal.1045337 schema:issn 2045-2322
130 schema:name Scientific Reports
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.01154110202.55 schema:affiliation grid-institutes:grid.481548.4
134 schema:familyName Jiang
135 schema:givenName J.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55
137 rdf:type schema:Person
138 sg:person.012250001247.97 schema:affiliation grid-institutes:grid.481548.4
139 schema:familyName Abraimov
140 schema:givenName D.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012250001247.97
142 rdf:type schema:Person
143 sg:person.01241160331.01 schema:affiliation grid-institutes:grid.481548.4
144 schema:familyName Kametani
145 schema:givenName F.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241160331.01
147 rdf:type schema:Person
148 sg:person.013512370724.92 schema:affiliation grid-institutes:grid.481548.4
149 schema:familyName Larbalestier
150 schema:givenName D. C.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512370724.92
152 rdf:type schema:Person
153 sg:person.0632002631.91 schema:affiliation grid-institutes:grid.481548.4
154 schema:familyName Hellstrom
155 schema:givenName E. E.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91
157 rdf:type schema:Person
158 sg:person.0751170420.11 schema:affiliation grid-institutes:grid.481548.4
159 schema:familyName Matras
160 schema:givenName M.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751170420.11
162 rdf:type schema:Person
163 sg:pub.10.1038/31907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014467635
164 https://doi.org/10.1038/31907
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/35104654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000028211
167 https://doi.org/10.1038/35104654
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nmat3887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040651649
170 https://doi.org/10.1038/nmat3887
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nphys540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040569358
173 https://doi.org/10.1038/nphys540
174 rdf:type schema:CreativeWork
175 sg:pub.10.1557/jmr.2005.0262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025969754
176 https://doi.org/10.1557/jmr.2005.0262
177 rdf:type schema:CreativeWork
178 grid-institutes:grid.481548.4 schema:alternateName Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA
179 schema:name Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee FL 32310, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...