Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-07

AUTHORS

Li Chen, Lei Zhang, Qinjun Kang, Hari S. Viswanathan, Jun Yao, Wenquan Tao

ABSTRACT

Porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. For the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed. More... »

PAGES

8089

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep08089

DOI

http://dx.doi.org/10.1038/srep08089

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018466027

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25627247


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China", 
            "Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Li", 
        "id": "sg:person.012305141321.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012305141321.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China University of Petroleum", 
          "id": "https://www.grid.ac/institutes/grid.497420.c", 
          "name": [
            "School of Petroleum Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lei", 
        "id": "sg:person.014027620375.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014027620375.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Qinjun", 
        "id": "sg:person.01261551665.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261551665.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viswanathan", 
        "givenName": "Hari S.", 
        "id": "sg:person.011161372533.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161372533.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China University of Petroleum", 
          "id": "https://www.grid.ac/institutes/grid.497420.c", 
          "name": [
            "School of Petroleum Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Jun", 
        "id": "sg:person.0601057270.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601057270.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tao", 
        "givenName": "Wenquan", 
        "id": "sg:person.015273043321.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273043321.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.07.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000141878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-2361(95)98364-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001979716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2005.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003332329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-4020-3962-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005339947", 
          "https://doi.org/10.1007/1-4020-3962-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-4020-3962-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005339947", 
          "https://doi.org/10.1007/1-4020-3962-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006wr005551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006101807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006659653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-013-0191-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008715688", 
          "https://doi.org/10.1007/s11242-013-0191-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-009-9432-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010840932", 
          "https://doi.org/10.1007/s11242-009-9432-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-009-9432-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010840932", 
          "https://doi.org/10.1007/s11242-009-9432-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-014-0401-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012389817", 
          "https://doi.org/10.1007/s11242-014-0401-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015364217", 
          "https://doi.org/10.1038/srep04843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0263-8762(97)80003-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017037026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.3478207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017248667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.3478207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017248667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2006.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019593916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.064502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019848554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.064502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019848554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/108939599199864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021009853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022183074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fluid.30.1.329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022436194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ggge.20254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023268694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-012-0024-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023661282", 
          "https://doi.org/10.1007/s11242-012-0024-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19093330106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es405118y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026564945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/int-2013-0003.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031438705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-011-9842-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032656059", 
          "https://doi.org/10.1007/s11242-011-9842-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2011.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032770969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6816(94)90066-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040661499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6816(94)90066-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040661499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-006-0006-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048816614", 
          "https://doi.org/10.1007/s11242-006-0006-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2012.424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053809436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2012.424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053809436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1897010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057831038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.043306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.043306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2110/jsr.2009.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068916365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/07-10-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068944252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/09-08-16-da", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068945296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/146821-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068950632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/146944-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068950641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/7551-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068959408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/9872-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068963386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5510/ogp20120200114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072933733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/107954-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096924598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/131767-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096947584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/137693-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099100622"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-07", 
    "datePublishedReg": "2015-07-01", 
    "description": "Porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. For the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep08089", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7174773", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity", 
    "pagination": "8089", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "57fc00657b702053e68b7540538c6310083e2c9415300850248f555d43ab6260"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25627247"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep08089"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018466027"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep08089", 
      "https://app.dimensions.ai/details/publication/pub.1018466027"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2015/150128/srep08089/full/srep08089.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep08089'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep08089'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep08089'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep08089'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      69 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep08089 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N22f856079aed40cb8cb14bbf52df675e
4 schema:citation sg:pub.10.1007/1-4020-3962-x
5 sg:pub.10.1007/s11242-006-0006-z
6 sg:pub.10.1007/s11242-009-9432-z
7 sg:pub.10.1007/s11242-011-9842-6
8 sg:pub.10.1007/s11242-012-0024-y
9 sg:pub.10.1007/s11242-013-0191-5
10 sg:pub.10.1007/s11242-014-0401-9
11 sg:pub.10.1038/srep04843
12 https://doi.org/10.1002/andp.19093330106
13 https://doi.org/10.1002/ggge.20254
14 https://doi.org/10.1016/0016-2361(95)98364-k
15 https://doi.org/10.1016/0079-6816(94)90066-3
16 https://doi.org/10.1016/j.advwatres.2006.03.009
17 https://doi.org/10.1016/j.compfluid.2005.03.008
18 https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.074
19 https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.032
20 https://doi.org/10.1016/j.ijthermalsci.2011.08.003
21 https://doi.org/10.1016/j.jcp.2013.07.034
22 https://doi.org/10.1016/s0263-8762(97)80003-2
23 https://doi.org/10.1017/jfm.2012.424
24 https://doi.org/10.1021/es405118y
25 https://doi.org/10.1029/2006wr005551
26 https://doi.org/10.1063/1.1897010
27 https://doi.org/10.1080/108939599199864
28 https://doi.org/10.1103/physreve.87.043306
29 https://doi.org/10.1103/physrevlett.100.064502
30 https://doi.org/10.1146/annurev.fluid.30.1.329
31 https://doi.org/10.1149/1.3478207
32 https://doi.org/10.1190/int-2013-0003.1
33 https://doi.org/10.2110/jsr.2009.092
34 https://doi.org/10.2118/07-10-06
35 https://doi.org/10.2118/09-08-16-da
36 https://doi.org/10.2118/107954-ms
37 https://doi.org/10.2118/131767-ms
38 https://doi.org/10.2118/137693-ms
39 https://doi.org/10.2118/146821-pa
40 https://doi.org/10.2118/146944-pa
41 https://doi.org/10.2118/7551-pa
42 https://doi.org/10.2118/9872-pa
43 https://doi.org/10.5510/ogp20120200114
44 schema:datePublished 2015-07
45 schema:datePublishedReg 2015-07-01
46 schema:description Porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. For the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N9f9dabb02d6d4348a20c9f2474b38f37
51 Nbb94042179f04543b223bcea3aee1246
52 sg:journal.1045337
53 schema:name Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity
54 schema:pagination 8089
55 schema:productId N7da435b2b5a74edabc4f73d2d2429a93
56 N827305e31d3249689651d01fbaa2151a
57 N89bd8ff2e4f140b8a8b6d5da00271277
58 Nb27f4205776a420cabc0980fcf36b795
59 Ncdae8303db0e4861a429a66127096e90
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018466027
61 https://doi.org/10.1038/srep08089
62 schema:sdDatePublished 2019-04-10T16:28
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Ndceb6b9f007347a4b3c1dc8ab5e43aad
65 schema:url http://www.nature.com/srep/2015/150128/srep08089/full/srep08089.html
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N22f856079aed40cb8cb14bbf52df675e rdf:first sg:person.012305141321.53
70 rdf:rest N593f627fab614bf2b71aa0698945791f
71 N247ce40b8fb348359c2fe95821988fb9 rdf:first sg:person.015273043321.18
72 rdf:rest rdf:nil
73 N593f627fab614bf2b71aa0698945791f rdf:first sg:person.014027620375.09
74 rdf:rest N694a8e1b170e41e7a97fc1f206f29f2b
75 N694a8e1b170e41e7a97fc1f206f29f2b rdf:first sg:person.01261551665.48
76 rdf:rest Nff09f44d43ac47a7811bc800d426aa22
77 N7da435b2b5a74edabc4f73d2d2429a93 schema:name nlm_unique_id
78 schema:value 101563288
79 rdf:type schema:PropertyValue
80 N827305e31d3249689651d01fbaa2151a schema:name doi
81 schema:value 10.1038/srep08089
82 rdf:type schema:PropertyValue
83 N89bd8ff2e4f140b8a8b6d5da00271277 schema:name pubmed_id
84 schema:value 25627247
85 rdf:type schema:PropertyValue
86 N9f9dabb02d6d4348a20c9f2474b38f37 schema:volumeNumber 5
87 rdf:type schema:PublicationVolume
88 Nb27f4205776a420cabc0980fcf36b795 schema:name readcube_id
89 schema:value 57fc00657b702053e68b7540538c6310083e2c9415300850248f555d43ab6260
90 rdf:type schema:PropertyValue
91 Nbb94042179f04543b223bcea3aee1246 schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 Ncdae8303db0e4861a429a66127096e90 schema:name dimensions_id
94 schema:value pub.1018466027
95 rdf:type schema:PropertyValue
96 Ndceb6b9f007347a4b3c1dc8ab5e43aad schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Ne6d45aacf1704b658a0dec30cf05ff32 rdf:first sg:person.0601057270.47
99 rdf:rest N247ce40b8fb348359c2fe95821988fb9
100 Nff09f44d43ac47a7811bc800d426aa22 rdf:first sg:person.011161372533.71
101 rdf:rest Ne6d45aacf1704b658a0dec30cf05ff32
102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
103 schema:name Engineering
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
106 schema:name Interdisciplinary Engineering
107 rdf:type schema:DefinedTerm
108 sg:grant.7174773 http://pending.schema.org/fundedItem sg:pub.10.1038/srep08089
109 rdf:type schema:MonetaryGrant
110 sg:journal.1045337 schema:issn 2045-2322
111 schema:name Scientific Reports
112 rdf:type schema:Periodical
113 sg:person.011161372533.71 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
114 schema:familyName Viswanathan
115 schema:givenName Hari S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161372533.71
117 rdf:type schema:Person
118 sg:person.012305141321.53 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
119 schema:familyName Chen
120 schema:givenName Li
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012305141321.53
122 rdf:type schema:Person
123 sg:person.01261551665.48 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
124 schema:familyName Kang
125 schema:givenName Qinjun
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261551665.48
127 rdf:type schema:Person
128 sg:person.014027620375.09 schema:affiliation https://www.grid.ac/institutes/grid.497420.c
129 schema:familyName Zhang
130 schema:givenName Lei
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014027620375.09
132 rdf:type schema:Person
133 sg:person.015273043321.18 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
134 schema:familyName Tao
135 schema:givenName Wenquan
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273043321.18
137 rdf:type schema:Person
138 sg:person.0601057270.47 schema:affiliation https://www.grid.ac/institutes/grid.497420.c
139 schema:familyName Yao
140 schema:givenName Jun
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601057270.47
142 rdf:type schema:Person
143 sg:pub.10.1007/1-4020-3962-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005339947
144 https://doi.org/10.1007/1-4020-3962-x
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11242-006-0006-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048816614
147 https://doi.org/10.1007/s11242-006-0006-z
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11242-009-9432-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010840932
150 https://doi.org/10.1007/s11242-009-9432-z
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11242-011-9842-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032656059
153 https://doi.org/10.1007/s11242-011-9842-6
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11242-012-0024-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1023661282
156 https://doi.org/10.1007/s11242-012-0024-y
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s11242-013-0191-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008715688
159 https://doi.org/10.1007/s11242-013-0191-5
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11242-014-0401-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012389817
162 https://doi.org/10.1007/s11242-014-0401-9
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/srep04843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015364217
165 https://doi.org/10.1038/srep04843
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/andp.19093330106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739677
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/ggge.20254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023268694
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0016-2361(95)98364-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1001979716
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/0079-6816(94)90066-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040661499
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.advwatres.2006.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019593916
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.compfluid.2005.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003332329
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022183074
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006659653
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.ijthermalsci.2011.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032770969
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jcp.2013.07.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000141878
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0263-8762(97)80003-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017037026
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1017/jfm.2012.424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053809436
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/es405118y schema:sameAs https://app.dimensions.ai/details/publication/pub.1026564945
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1029/2006wr005551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006101807
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1063/1.1897010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057831038
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1080/108939599199864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021009853
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physreve.87.043306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060744774
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.100.064502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019848554
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1146/annurev.fluid.30.1.329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022436194
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1149/1.3478207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017248667
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1190/int-2013-0003.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031438705
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2110/jsr.2009.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068916365
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2118/07-10-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068944252
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2118/09-08-16-da schema:sameAs https://app.dimensions.ai/details/publication/pub.1068945296
214 rdf:type schema:CreativeWork
215 https://doi.org/10.2118/107954-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096924598
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2118/131767-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096947584
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2118/137693-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1099100622
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2118/146821-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068950632
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2118/146944-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068950641
224 rdf:type schema:CreativeWork
225 https://doi.org/10.2118/7551-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068959408
226 rdf:type schema:CreativeWork
227 https://doi.org/10.2118/9872-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068963386
228 rdf:type schema:CreativeWork
229 https://doi.org/10.5510/ogp20120200114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072933733
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
232 schema:name Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
233 Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
236 schema:name Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.497420.c schema:alternateName China University of Petroleum
239 schema:name School of Petroleum Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...