Real-time and Sub-wavelength Ultrafast Coherent Diffraction Imaging in the Extreme Ultraviolet View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05

AUTHORS

M Zürch, J Rothhardt, S Hädrich, S Demmler, M Krebs, J Limpert, A Tünnermann, A Guggenmos, U Kleineberg, C Spielmann

ABSTRACT

Coherent Diffraction Imaging is a technique to study matter with nanometer-scale spatial resolution based on coherent illumination of the sample with hard X-ray, soft X-ray or extreme ultraviolet light delivered from synchrotrons or more recently X-ray Free-Electron Lasers. This robust technique simultaneously allows quantitative amplitude and phase contrast imaging. Laser-driven high harmonic generation XUV-sources allow table-top realizations. However, the low conversion efficiency of lab-based sources imposes either a large scale laser system or long exposure times, preventing many applications. Here we present a lensless imaging experiment combining a high numerical aperture (NA = 0.8) setup with a high average power fibre laser driven high harmonic source. The high flux and narrow-band harmonic line at 33.2 nm enables either sub-wavelength spatial resolution close to the Abbe limit (Δr = 0.8λ) for long exposure time, or sub-70 nm imaging in less than one second. The unprecedented high spatial resolution, compactness of the setup together with the real-time capability paves the way for a plethora of applications in fundamental and life sciences. More... »

PAGES

7356

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep07356

DOI

http://dx.doi.org/10.1038/srep07356

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009060525

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25483626


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Z\u00fcrch", 
        "givenName": "M", 
        "id": "sg:person.0600113177.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113177.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "1] Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Albert-Einstein-Stra\u00dfe 15, 07745 Jena, Germany [2] Helmholtz Institute Jena, Fr\u00f6belstieg 3, 07743 Jena, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rothhardt", 
        "givenName": "J", 
        "id": "sg:person.01360610026.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360610026.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "1] Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Albert-Einstein-Stra\u00dfe 15, 07745 Jena, Germany [2] Helmholtz Institute Jena, Fr\u00f6belstieg 3, 07743 Jena, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e4drich", 
        "givenName": "S", 
        "id": "sg:person.0724165131.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724165131.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Albert-Einstein-Stra\u00dfe 15, 07745 Jena, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Demmler", 
        "givenName": "S", 
        "id": "sg:person.0625546412.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625546412.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Albert-Einstein-Stra\u00dfe 15, 07745 Jena, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krebs", 
        "givenName": "M", 
        "id": "sg:person.0607454624.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607454624.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "1] Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Albert-Einstein-Stra\u00dfe 15, 07745 Jena, Germany [2] Helmholtz Institute Jena, Fr\u00f6belstieg 3, 07743 Jena, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Limpert", 
        "givenName": "J", 
        "id": "sg:person.0741775012.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741775012.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "1] Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Albert-Einstein-Stra\u00dfe 15, 07745 Jena, Germany [2] Helmholtz Institute Jena, Fr\u00f6belstieg 3, 07743 Jena, Germany [3] Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Stra\u00dfe 7, 07745 Jena, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00fcnnermann", 
        "givenName": "A", 
        "id": "sg:person.0577721111.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577721111.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "1] Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Am Coulombwall 1, D-85748 Garching, Germany [2] Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guggenmos", 
        "givenName": "A", 
        "id": "sg:person.0664116567.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664116567.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "1] Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Am Coulombwall 1, D-85748 Garching, Germany [2] Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kleineberg", 
        "givenName": "U", 
        "id": "sg:person.01120434667.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120434667.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "1] Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany [2] Helmholtz Institute Jena, Fr\u00f6belstieg 3, 07743 Jena, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spielmann", 
        "givenName": "C", 
        "id": "sg:person.011755611324.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755611324.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2008.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004105678", 
          "https://doi.org/10.1038/nphoton.2008.128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultramic.2004.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005848208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/45/7/074020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009607997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0503305102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027199095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0503305102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027199095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027458823", 
          "https://doi.org/10.1038/nphys516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028687752", 
          "https://doi.org/10.1038/nature08705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028687752", 
          "https://doi.org/10.1038/nature08705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1000156107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030601930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035538858", 
          "https://doi.org/10.1038/nphoton.2014.214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/21/1/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037637376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.23.001179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038064597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039893281", 
          "https://doi.org/10.1038/nphoton.2010.240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039893281", 
          "https://doi.org/10.1038/nphoton.2010.240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.140101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042734038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.140101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042734038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340802398236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043874379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jmi.1.3.031008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-013-0699-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046379719", 
          "https://doi.org/10.1007/s11837-013-0699-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/3/035003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059134977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/3/035003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059134977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2040-8978/15/9/094009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059180177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.023809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.023809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.174104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060606363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.174104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060606363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.028104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.028104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.215503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.215503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.098103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.098103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.72.545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.72.545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josa.72.000610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065155959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.15.001662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065158590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.001767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065195686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.010232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065196825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.022470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065198176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.011441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065203764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.021131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065204898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.021728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065204962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.34.001618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065227252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.36.004605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065231207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.39.005224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065236326"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "Coherent Diffraction Imaging is a technique to study matter with nanometer-scale spatial resolution based on coherent illumination of the sample with hard X-ray, soft X-ray or extreme ultraviolet light delivered from synchrotrons or more recently X-ray Free-Electron Lasers. This robust technique simultaneously allows quantitative amplitude and phase contrast imaging. Laser-driven high harmonic generation XUV-sources allow table-top realizations. However, the low conversion efficiency of lab-based sources imposes either a large scale laser system or long exposure times, preventing many applications. Here we present a lensless imaging experiment combining a high numerical aperture (NA = 0.8) setup with a high average power fibre laser driven high harmonic source. The high flux and narrow-band harmonic line at 33.2\u2005nm enables either sub-wavelength spatial resolution close to the Abbe limit (\u0394r = 0.8\u03bb) for long exposure time, or sub-70\u2005nm imaging in less than one second. The unprecedented high spatial resolution, compactness of the setup together with the real-time capability paves the way for a plethora of applications in fundamental and life sciences. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep07356", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3780051", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Real-time and Sub-wavelength Ultrafast Coherent Diffraction Imaging in the Extreme Ultraviolet", 
    "pagination": "7356", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2b2aa3171cdf24b2ef901730b29a639e3199ec48c8aff3d397d7b6cde8b9d32c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25483626"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep07356"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009060525"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep07356", 
      "https://app.dimensions.ai/details/publication/pub.1009060525"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2014/141208/srep07356/full/srep07356.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep07356'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep07356'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep07356'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep07356'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep07356 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N7c1315a05b104936b7f9bf15f8bd4220
4 schema:citation sg:pub.10.1007/s11837-013-0699-8
5 sg:pub.10.1038/nature08705
6 sg:pub.10.1038/nphoton.2008.128
7 sg:pub.10.1038/nphoton.2010.240
8 sg:pub.10.1038/nphoton.2014.214
9 sg:pub.10.1038/nphys516
10 https://doi.org/10.1016/j.ultramic.2004.09.001
11 https://doi.org/10.1073/pnas.0503305102
12 https://doi.org/10.1073/pnas.1000156107
13 https://doi.org/10.1080/09500340802398236
14 https://doi.org/10.1088/0266-5611/21/1/004
15 https://doi.org/10.1088/0953-4075/45/7/074020
16 https://doi.org/10.1088/1367-2630/12/3/035003
17 https://doi.org/10.1088/2040-8978/15/9/094009
18 https://doi.org/10.1103/physreva.79.023809
19 https://doi.org/10.1103/physrevb.67.174104
20 https://doi.org/10.1103/physrevb.68.140101
21 https://doi.org/10.1103/physrevlett.103.028104
22 https://doi.org/10.1103/physrevlett.97.215503
23 https://doi.org/10.1103/physrevlett.99.098103
24 https://doi.org/10.1103/revmodphys.72.545
25 https://doi.org/10.1117/1.jmi.1.3.031008
26 https://doi.org/10.1364/josa.72.000610
27 https://doi.org/10.1364/josaa.15.001662
28 https://doi.org/10.1364/josaa.23.001179
29 https://doi.org/10.1364/oe.19.001767
30 https://doi.org/10.1364/oe.19.010232
31 https://doi.org/10.1364/oe.19.022470
32 https://doi.org/10.1364/oe.21.011441
33 https://doi.org/10.1364/oe.21.021131
34 https://doi.org/10.1364/oe.21.021728
35 https://doi.org/10.1364/ol.34.001618
36 https://doi.org/10.1364/ol.36.004605
37 https://doi.org/10.1364/ol.39.005224
38 schema:datePublished 2015-05
39 schema:datePublishedReg 2015-05-01
40 schema:description Coherent Diffraction Imaging is a technique to study matter with nanometer-scale spatial resolution based on coherent illumination of the sample with hard X-ray, soft X-ray or extreme ultraviolet light delivered from synchrotrons or more recently X-ray Free-Electron Lasers. This robust technique simultaneously allows quantitative amplitude and phase contrast imaging. Laser-driven high harmonic generation XUV-sources allow table-top realizations. However, the low conversion efficiency of lab-based sources imposes either a large scale laser system or long exposure times, preventing many applications. Here we present a lensless imaging experiment combining a high numerical aperture (NA = 0.8) setup with a high average power fibre laser driven high harmonic source. The high flux and narrow-band harmonic line at 33.2 nm enables either sub-wavelength spatial resolution close to the Abbe limit (Δr = 0.8λ) for long exposure time, or sub-70 nm imaging in less than one second. The unprecedented high spatial resolution, compactness of the setup together with the real-time capability paves the way for a plethora of applications in fundamental and life sciences.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf Na1bbbafd6e12467b8b8cfa21e7e74287
45 Nc49f6ba876f64fb4acc5411708f9e466
46 sg:journal.1045337
47 schema:name Real-time and Sub-wavelength Ultrafast Coherent Diffraction Imaging in the Extreme Ultraviolet
48 schema:pagination 7356
49 schema:productId N42d1422617d8479892a8bb0334cfc2fb
50 N5585bbe24d2246fe9dbe07906a0279f5
51 N76b7fd1fa8e944a1b32cc8300873b297
52 Na7a56a4ed49b49d2958941de53a26ba0
53 Nfa4da25a45c1485fbc4fcde83c71fa0f
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009060525
55 https://doi.org/10.1038/srep07356
56 schema:sdDatePublished 2019-04-10T17:19
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ne6907be1ea5d4d828c8738b4b79cceab
59 schema:url http://www.nature.com/srep/2014/141208/srep07356/full/srep07356.html
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0c2f8ec7220f4bbfa1975aebd9ba79b6 rdf:first sg:person.0607454624.96
64 rdf:rest N9bff4a38b3aa45e6b524dc58cc58758b
65 N3cb6b2926e4a4f868451b4af447f4369 rdf:first sg:person.0724165131.75
66 rdf:rest Ned971d05cf2b45b2847713b9b4168412
67 N42d1422617d8479892a8bb0334cfc2fb schema:name dimensions_id
68 schema:value pub.1009060525
69 rdf:type schema:PropertyValue
70 N5585bbe24d2246fe9dbe07906a0279f5 schema:name nlm_unique_id
71 schema:value 101563288
72 rdf:type schema:PropertyValue
73 N5c7a3562f9554b3abc66404b2803a3f3 rdf:first sg:person.0664116567.39
74 rdf:rest N9a886aba6d20457c978ef84e37794ed9
75 N76b7fd1fa8e944a1b32cc8300873b297 schema:name doi
76 schema:value 10.1038/srep07356
77 rdf:type schema:PropertyValue
78 N7c1315a05b104936b7f9bf15f8bd4220 rdf:first sg:person.0600113177.02
79 rdf:rest N8d2f5b9f4795425ab46010fcb0263cee
80 N848b1fad9dc7497d9c8e9ac993bb0201 rdf:first sg:person.011755611324.38
81 rdf:rest rdf:nil
82 N8d2f5b9f4795425ab46010fcb0263cee rdf:first sg:person.01360610026.84
83 rdf:rest N3cb6b2926e4a4f868451b4af447f4369
84 N9a886aba6d20457c978ef84e37794ed9 rdf:first sg:person.01120434667.86
85 rdf:rest N848b1fad9dc7497d9c8e9ac993bb0201
86 N9bff4a38b3aa45e6b524dc58cc58758b rdf:first sg:person.0741775012.56
87 rdf:rest Nc70c14e311374daca1981f4cc0c03197
88 Na1bbbafd6e12467b8b8cfa21e7e74287 schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 Na7a56a4ed49b49d2958941de53a26ba0 schema:name pubmed_id
91 schema:value 25483626
92 rdf:type schema:PropertyValue
93 Nc49f6ba876f64fb4acc5411708f9e466 schema:volumeNumber 4
94 rdf:type schema:PublicationVolume
95 Nc70c14e311374daca1981f4cc0c03197 rdf:first sg:person.0577721111.73
96 rdf:rest N5c7a3562f9554b3abc66404b2803a3f3
97 Ne6907be1ea5d4d828c8738b4b79cceab schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Ned971d05cf2b45b2847713b9b4168412 rdf:first sg:person.0625546412.36
100 rdf:rest N0c2f8ec7220f4bbfa1975aebd9ba79b6
101 Nfa4da25a45c1485fbc4fcde83c71fa0f schema:name readcube_id
102 schema:value 2b2aa3171cdf24b2ef901730b29a639e3199ec48c8aff3d397d7b6cde8b9d32c
103 rdf:type schema:PropertyValue
104 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
105 schema:name Physical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
108 schema:name Other Physical Sciences
109 rdf:type schema:DefinedTerm
110 sg:grant.3780051 http://pending.schema.org/fundedItem sg:pub.10.1038/srep07356
111 rdf:type schema:MonetaryGrant
112 sg:journal.1045337 schema:issn 2045-2322
113 schema:name Scientific Reports
114 rdf:type schema:Periodical
115 sg:person.01120434667.86 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
116 schema:familyName Kleineberg
117 schema:givenName U
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120434667.86
119 rdf:type schema:Person
120 sg:person.011755611324.38 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
121 schema:familyName Spielmann
122 schema:givenName C
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755611324.38
124 rdf:type schema:Person
125 sg:person.01360610026.84 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
126 schema:familyName Rothhardt
127 schema:givenName J
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360610026.84
129 rdf:type schema:Person
130 sg:person.0577721111.73 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
131 schema:familyName Tünnermann
132 schema:givenName A
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577721111.73
134 rdf:type schema:Person
135 sg:person.0600113177.02 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
136 schema:familyName Zürch
137 schema:givenName M
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113177.02
139 rdf:type schema:Person
140 sg:person.0607454624.96 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
141 schema:familyName Krebs
142 schema:givenName M
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607454624.96
144 rdf:type schema:Person
145 sg:person.0625546412.36 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
146 schema:familyName Demmler
147 schema:givenName S
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625546412.36
149 rdf:type schema:Person
150 sg:person.0664116567.39 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
151 schema:familyName Guggenmos
152 schema:givenName A
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664116567.39
154 rdf:type schema:Person
155 sg:person.0724165131.75 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
156 schema:familyName Hädrich
157 schema:givenName S
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724165131.75
159 rdf:type schema:Person
160 sg:person.0741775012.56 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
161 schema:familyName Limpert
162 schema:givenName J
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741775012.56
164 rdf:type schema:Person
165 sg:pub.10.1007/s11837-013-0699-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046379719
166 https://doi.org/10.1007/s11837-013-0699-8
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nature08705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028687752
169 https://doi.org/10.1038/nature08705
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nphoton.2008.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004105678
172 https://doi.org/10.1038/nphoton.2008.128
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nphoton.2010.240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039893281
175 https://doi.org/10.1038/nphoton.2010.240
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nphoton.2014.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035538858
178 https://doi.org/10.1038/nphoton.2014.214
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nphys516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027458823
181 https://doi.org/10.1038/nphys516
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.ultramic.2004.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005848208
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1073/pnas.0503305102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027199095
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1073/pnas.1000156107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030601930
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1080/09500340802398236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043874379
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1088/0266-5611/21/1/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037637376
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1088/0953-4075/45/7/074020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009607997
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1088/1367-2630/12/3/035003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059134977
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1088/2040-8978/15/9/094009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059180177
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physreva.79.023809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060505470
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.67.174104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060606363
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.68.140101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042734038
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.103.028104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755676
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.97.215503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833159
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.99.098103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834540
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/revmodphys.72.545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839521
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1117/1.jmi.1.3.031008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135014
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1364/josa.72.000610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065155959
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1364/josaa.15.001662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065158590
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1364/josaa.23.001179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038064597
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1364/oe.19.001767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065195686
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1364/oe.19.010232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065196825
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1364/oe.19.022470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065198176
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1364/oe.21.011441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065203764
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1364/oe.21.021131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065204898
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1364/oe.21.021728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065204962
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1364/ol.34.001618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065227252
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1364/ol.36.004605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065231207
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1364/ol.39.005224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065236326
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
240 schema:name 1] Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748 Garching, Germany [2] Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany.
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.9613.d schema:alternateName Friedrich Schiller University Jena
243 schema:name 1] Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Albert-Einstein-Straße 15, 07745 Jena, Germany [2] Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany [3] Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Straße 7, 07745 Jena, Germany.
244 1] Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Albert-Einstein-Straße 15, 07745 Jena, Germany [2] Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany.
245 1] Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany [2] Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany.
246 Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Albert-Einstein-Straße 15, 07745 Jena, Germany.
247 Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany.
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...