Robust surface state transport in thin bismuth nanoribbons View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-11-18

AUTHORS

Wei Ning, Fengyu Kong, Yuyan Han, Haifeng Du, Jiyong Yang, Mingliang Tian, Yuheng Zhang

ABSTRACT

While a two-dimensional (2D) metallic surface state in bismuth has been proposed, experimental 2D evidence of quantum transport, e.g., angular dependent Shubnikov-de Haas (SdH) oscillations is still lacking. Here, we report the angular-dependent magnetoresistance measurements in single-crystal Bi nanoribbons and found that both the low-field weak antilocalization behavior and the high-field angle-dependent SdH oscillations follow exactly the 2D character, indicative of the 2D metallic surface states which dominate the transport properties of thin Bi nanoribbons. Moreover, by controllable exposing the ribbons to ambient environment (1 atm and room temperature), the metallic surface states were found to be robust to the oxidation although the carrier density in the surface states are modified after the exposures. These results suggest that the metallic surface states in Bi nanoribbons should be topologically protected which can provide key information in understanding the surface properties of Bi in nanometer scale. More... »

PAGES

7086

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep07086

DOI

http://dx.doi.org/10.1038/srep07086

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038480228

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25404036


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ning", 
        "givenName": "Wei", 
        "id": "sg:person.0623034075.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623034075.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kong", 
        "givenName": "Fengyu", 
        "id": "sg:person.010756434267.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010756434267.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Yuyan", 
        "id": "sg:person.01170424364.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170424364.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Haifeng", 
        "id": "sg:person.01115763175.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115763175.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jiyong", 
        "id": "sg:person.01002743020.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002743020.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China", 
            "Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Mingliang", 
        "id": "sg:person.01304166075.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304166075.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China", 
            "Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yuheng", 
        "id": "sg:person.01117171420.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep00726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020303106", 
          "https://doi.org/10.1038/srep00726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020801377", 
          "https://doi.org/10.1038/srep01212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011410733", 
          "https://doi.org/10.1038/ncomms1771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep03406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042951090", 
          "https://doi.org/10.1038/srep03406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017332647", 
          "https://doi.org/10.1038/nphys2111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029923694", 
          "https://doi.org/10.1038/nmat2609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015687519", 
          "https://doi.org/10.1038/nnano.2011.19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039749735", 
          "https://doi.org/10.1038/nphys1861"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11-18", 
    "datePublishedReg": "2014-11-18", 
    "description": "While a two-dimensional (2D) metallic surface state in bismuth has been proposed, experimental 2D evidence of quantum transport, e.g., angular dependent Shubnikov-de Haas (SdH) oscillations is still lacking. Here, we report the angular-dependent magnetoresistance measurements in single-crystal Bi nanoribbons and found that both the low-field weak antilocalization behavior and the high-field angle-dependent SdH oscillations follow exactly the 2D character, indicative of the 2D metallic surface states which dominate the transport properties of thin Bi nanoribbons. Moreover, by controllable exposing the ribbons to ambient environment (1 atm and room temperature), the metallic surface states were found to be robust to the oxidation although the carrier density in the surface states are modified after the exposures. These results suggest that the metallic surface states in Bi nanoribbons should be topologically protected which can provide key information in understanding the surface properties of Bi in nanometer scale.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep07086", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8379445", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8379458", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8117161", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6984612", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7013234", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "Bi nanoribbons", 
      "metallic surface states", 
      "surface states", 
      "surface state transport", 
      "weak antilocalization behavior", 
      "surface properties", 
      "ambient environment", 
      "carrier density", 
      "nanometer scale", 
      "transport properties", 
      "magnetoresistance measurements", 
      "nanoribbons", 
      "state transport", 
      "angular-dependent magnetoresistance measurements", 
      "properties", 
      "transport", 
      "two-dimensional metallic surface states", 
      "oscillations", 
      "Shubnikov-de Haas oscillations", 
      "ribbons", 
      "oxidation", 
      "Haas oscillations", 
      "density", 
      "bismuth", 
      "measurements", 
      "Bi", 
      "behavior", 
      "quantum transport", 
      "SdH oscillations", 
      "key information", 
      "state", 
      "results", 
      "environment", 
      "scale", 
      "character", 
      "information", 
      "exposure", 
      "evidence"
    ], 
    "name": "Robust surface state transport in thin bismuth nanoribbons", 
    "pagination": "7086", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038480228"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep07086"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25404036"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep07086", 
      "https://app.dimensions.ai/details/publication/pub.1038480228"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_625.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep07086"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep07086'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep07086'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep07086'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep07086'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      71 URIs      55 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep07086 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N01c6cdabf0ee4564bfaaf826fbedfe36
4 schema:citation sg:pub.10.1038/ncomms1771
5 sg:pub.10.1038/nmat2609
6 sg:pub.10.1038/nnano.2011.19
7 sg:pub.10.1038/nphys1861
8 sg:pub.10.1038/nphys2111
9 sg:pub.10.1038/srep00726
10 sg:pub.10.1038/srep01212
11 sg:pub.10.1038/srep03406
12 schema:datePublished 2014-11-18
13 schema:datePublishedReg 2014-11-18
14 schema:description While a two-dimensional (2D) metallic surface state in bismuth has been proposed, experimental 2D evidence of quantum transport, e.g., angular dependent Shubnikov-de Haas (SdH) oscillations is still lacking. Here, we report the angular-dependent magnetoresistance measurements in single-crystal Bi nanoribbons and found that both the low-field weak antilocalization behavior and the high-field angle-dependent SdH oscillations follow exactly the 2D character, indicative of the 2D metallic surface states which dominate the transport properties of thin Bi nanoribbons. Moreover, by controllable exposing the ribbons to ambient environment (1 atm and room temperature), the metallic surface states were found to be robust to the oxidation although the carrier density in the surface states are modified after the exposures. These results suggest that the metallic surface states in Bi nanoribbons should be topologically protected which can provide key information in understanding the surface properties of Bi in nanometer scale.
15 schema:genre article
16 schema:isAccessibleForFree true
17 schema:isPartOf N5fc177d6e3c14ddfb07deec57a69345e
18 Ndb15861a46884fc88ac03af2c403ffed
19 sg:journal.1045337
20 schema:keywords Bi
21 Bi nanoribbons
22 Haas oscillations
23 SdH oscillations
24 Shubnikov-de Haas oscillations
25 ambient environment
26 angular-dependent magnetoresistance measurements
27 behavior
28 bismuth
29 carrier density
30 character
31 density
32 environment
33 evidence
34 exposure
35 information
36 key information
37 magnetoresistance measurements
38 measurements
39 metallic surface states
40 nanometer scale
41 nanoribbons
42 oscillations
43 oxidation
44 properties
45 quantum transport
46 results
47 ribbons
48 scale
49 state
50 state transport
51 surface properties
52 surface state transport
53 surface states
54 transport
55 transport properties
56 two-dimensional metallic surface states
57 weak antilocalization behavior
58 schema:name Robust surface state transport in thin bismuth nanoribbons
59 schema:pagination 7086
60 schema:productId N85c5aa3af0304e8b9af18172d032d74c
61 Nbe5d4321763b475990a24dbdd71f4f75
62 Nfcf0f0db22384097bfd72aa6cf6bb56c
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038480228
64 https://doi.org/10.1038/srep07086
65 schema:sdDatePublished 2022-10-01T06:39
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N769d60a8959141e7a30d88f2e3838cc7
68 schema:url https://doi.org/10.1038/srep07086
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N01c6cdabf0ee4564bfaaf826fbedfe36 rdf:first sg:person.0623034075.08
73 rdf:rest Nb96b4ebba35642b99a25f07d588093a2
74 N1ab5ca0861d6400ba12fe221dfcc9746 rdf:first sg:person.01115763175.41
75 rdf:rest N3965e8d205974de9a28c4d5950cedc51
76 N3965e8d205974de9a28c4d5950cedc51 rdf:first sg:person.01002743020.54
77 rdf:rest N4a2c9c29fe4c47db8c6edcaa55cbeb69
78 N3d3a39a3ada14f45a9ab7167d1eb733f rdf:first sg:person.01117171420.13
79 rdf:rest rdf:nil
80 N4a2c9c29fe4c47db8c6edcaa55cbeb69 rdf:first sg:person.01304166075.42
81 rdf:rest N3d3a39a3ada14f45a9ab7167d1eb733f
82 N5fc177d6e3c14ddfb07deec57a69345e schema:volumeNumber 4
83 rdf:type schema:PublicationVolume
84 N769d60a8959141e7a30d88f2e3838cc7 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N85c5aa3af0304e8b9af18172d032d74c schema:name pubmed_id
87 schema:value 25404036
88 rdf:type schema:PropertyValue
89 Nb96b4ebba35642b99a25f07d588093a2 rdf:first sg:person.010756434267.05
90 rdf:rest Nbf5210d42378426ab2972134ce7005f2
91 Nbe5d4321763b475990a24dbdd71f4f75 schema:name dimensions_id
92 schema:value pub.1038480228
93 rdf:type schema:PropertyValue
94 Nbf5210d42378426ab2972134ce7005f2 rdf:first sg:person.01170424364.97
95 rdf:rest N1ab5ca0861d6400ba12fe221dfcc9746
96 Ndb15861a46884fc88ac03af2c403ffed schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 Nfcf0f0db22384097bfd72aa6cf6bb56c schema:name doi
99 schema:value 10.1038/srep07086
100 rdf:type schema:PropertyValue
101 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
102 schema:name Chemical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
105 schema:name Physical Chemistry (incl. Structural)
106 rdf:type schema:DefinedTerm
107 sg:grant.6984612 http://pending.schema.org/fundedItem sg:pub.10.1038/srep07086
108 rdf:type schema:MonetaryGrant
109 sg:grant.7013234 http://pending.schema.org/fundedItem sg:pub.10.1038/srep07086
110 rdf:type schema:MonetaryGrant
111 sg:grant.8117161 http://pending.schema.org/fundedItem sg:pub.10.1038/srep07086
112 rdf:type schema:MonetaryGrant
113 sg:grant.8379445 http://pending.schema.org/fundedItem sg:pub.10.1038/srep07086
114 rdf:type schema:MonetaryGrant
115 sg:grant.8379458 http://pending.schema.org/fundedItem sg:pub.10.1038/srep07086
116 rdf:type schema:MonetaryGrant
117 sg:journal.1045337 schema:issn 2045-2322
118 schema:name Scientific Reports
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.01002743020.54 schema:affiliation grid-institutes:grid.467854.c
122 schema:familyName Yang
123 schema:givenName Jiyong
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002743020.54
125 rdf:type schema:Person
126 sg:person.010756434267.05 schema:affiliation grid-institutes:grid.467854.c
127 schema:familyName Kong
128 schema:givenName Fengyu
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010756434267.05
130 rdf:type schema:Person
131 sg:person.01115763175.41 schema:affiliation grid-institutes:grid.467854.c
132 schema:familyName Du
133 schema:givenName Haifeng
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115763175.41
135 rdf:type schema:Person
136 sg:person.01117171420.13 schema:affiliation grid-institutes:grid.509497.6
137 schema:familyName Zhang
138 schema:givenName Yuheng
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13
140 rdf:type schema:Person
141 sg:person.01170424364.97 schema:affiliation grid-institutes:grid.467854.c
142 schema:familyName Han
143 schema:givenName Yuyan
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170424364.97
145 rdf:type schema:Person
146 sg:person.01304166075.42 schema:affiliation grid-institutes:grid.509497.6
147 schema:familyName Tian
148 schema:givenName Mingliang
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304166075.42
150 rdf:type schema:Person
151 sg:person.0623034075.08 schema:affiliation grid-institutes:grid.467854.c
152 schema:familyName Ning
153 schema:givenName Wei
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623034075.08
155 rdf:type schema:Person
156 sg:pub.10.1038/ncomms1771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011410733
157 https://doi.org/10.1038/ncomms1771
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nmat2609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029923694
160 https://doi.org/10.1038/nmat2609
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nnano.2011.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015687519
163 https://doi.org/10.1038/nnano.2011.19
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nphys1861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039749735
166 https://doi.org/10.1038/nphys1861
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nphys2111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017332647
169 https://doi.org/10.1038/nphys2111
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/srep00726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020303106
172 https://doi.org/10.1038/srep00726
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/srep01212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020801377
175 https://doi.org/10.1038/srep01212
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/srep03406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042951090
178 https://doi.org/10.1038/srep03406
179 rdf:type schema:CreativeWork
180 grid-institutes:grid.467854.c schema:alternateName High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China
181 schema:name High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China
182 rdf:type schema:Organization
183 grid-institutes:grid.509497.6 schema:alternateName Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China
184 schema:name Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China
185 High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, P.R. China
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...