High fidelity quantum state transfer in electromechanical systems with intermediate coupling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05

AUTHORS

Jian Zhou, Yong Hu, Zhang-qi Yin, Z. D. Wang, Shi-Liang Zhu, Zheng-Yuan Xue

ABSTRACT

Hybrid quantum systems usually consist of two or more subsystems, which may take the advantages of the different systems. Recently, the hybrid system consisting of circuit electromechanical subsystems have attracted great attention due to its advanced fabrication and scalable integrated photonic circuit techniques. Here, we propose a scheme for high fidelity quantum state transfer between a superconducting qubit and a nitrogen-vacancy center in diamond, which are coupled to a superconducting transmission-line resonator with coupling strength g1 and a nanomechanical resonator with coupling strength g2, respectively. Meanwhile, the two resonators are parametrically coupled with coupling strength J. The system dynamics, including the decoherence effects, is numerical investigated. It is found that both the small (J<<{g1,g2}) and large (J>>{g1,g2}) coupling regimes of this hybrid system can not support high fidelity quantum state transfer before significant technique advances. However, in the intermediate coupling regime (J ~ g1 ~ g2), in contrast to a conventional wisdom, high fidelity quantum information transfer can be implemented, providing a promising route towards high fidelity quantum state transfer in similar coupled resonators systems. More... »

PAGES

6237

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep06237

DOI

http://dx.doi.org/10.1038/srep06237

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025040382

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25168206


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Anhui Xinhua University", 
          "id": "https://www.grid.ac/institutes/grid.459336.e", 
          "name": [
            "Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China", 
            "Anhui Xinhua University, Hefei, 230088, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Jian", 
        "id": "sg:person.01127360350.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127360350.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Huazhong University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China", 
            "School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Yong", 
        "id": "sg:person.01257374044.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257374044.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Zhang-qi", 
        "id": "sg:person.01243606750.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243606750.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Z. D.", 
        "id": "sg:person.011374710011.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Shi-Liang", 
        "id": "sg:person.01277135126.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277135126.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China", 
            "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Zheng-Yuan", 
        "id": "sg:person.01143145444.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143145444.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.75.012324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005225341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.012324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005225341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006539606", 
          "https://doi.org/10.1038/nmat2420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006539606", 
          "https://doi.org/10.1038/nmat2420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.73.022318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007635856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.73.022318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007635856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3693409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009999299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.062320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010131608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.062320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010131608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.041302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010742604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.041302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010742604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010985600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010985600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.040304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013112809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.040304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013112809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.021801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015271851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.021801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015271851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019495891", 
          "https://doi.org/10.1038/nphys2527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.042342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019607186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.042342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019607186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.042339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023349398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.042339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023349398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.107008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023814275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.107008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023814275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.177004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025003865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.177004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025003865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.010301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025406904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.010301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025406904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025452107", 
          "https://doi.org/10.1038/nature09898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.220501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027376182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.220501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027376182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031333853", 
          "https://doi.org/10.1038/nphys1679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031333853", 
          "https://doi.org/10.1038/nphys1679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.203603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034486813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.203603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034486813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/451664a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037543758", 
          "https://doi.org/10.1038/451664a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.020301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037549260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.020301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037549260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.080502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037630875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.080502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037630875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038879203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038879203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.88.043802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040303826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.88.043802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040303826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043866535", 
          "https://doi.org/10.1038/nature10462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045153976", 
          "https://doi.org/10.1038/nphys2070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.220501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045584240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.220501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045584240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.042341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045896153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.042341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045896153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.042336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046373912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.042336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046373912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.040504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048383365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.040504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048383365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.024301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050504416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.024301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050504416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051167800", 
          "https://doi.org/10.1038/nature11821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.210501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051417461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.210501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051417461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052132570", 
          "https://doi.org/10.1038/nature11915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.034303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052240561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.034303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052240561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.81.033843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060507311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.81.033843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060507311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.022302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060508373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.022302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060508373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.043849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060509269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.043849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060509269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.064105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.064105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641934"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "Hybrid quantum systems usually consist of two or more subsystems, which may take the advantages of the different systems. Recently, the hybrid system consisting of circuit electromechanical subsystems have attracted great attention due to its advanced fabrication and scalable integrated photonic circuit techniques. Here, we propose a scheme for high fidelity quantum state transfer between a superconducting qubit and a nitrogen-vacancy center in diamond, which are coupled to a superconducting transmission-line resonator with coupling strength g1 and a nanomechanical resonator with coupling strength g2, respectively. Meanwhile, the two resonators are parametrically coupled with coupling strength J. The system dynamics, including the decoherence effects, is numerical investigated. It is found that both the small (J<<{g1,g2}) and large (J>>{g1,g2}) coupling regimes of this hybrid system can not support high fidelity quantum state transfer before significant technique advances. However, in the intermediate coupling regime (J ~ g1 ~ g2), in contrast to a conventional wisdom, high fidelity quantum information transfer can be implemented, providing a promising route towards high fidelity quantum state transfer in similar coupled resonators systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep06237", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6977560", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6989394", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6979749", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6990297", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "High fidelity quantum state transfer in electromechanical systems with intermediate coupling", 
    "pagination": "6237", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "774a9a5719469c4b09a56f97aff259367ebb28751b1565c2615599d8c69d17b6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25168206"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep06237"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025040382"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep06237", 
      "https://app.dimensions.ai/details/publication/pub.1025040382"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2014/140829/srep06237/full/srep06237.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep06237'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep06237'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep06237'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep06237'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep06237 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N14a926706e0c40298ee8a2b8528e7708
4 schema:citation sg:pub.10.1038/451664a
5 sg:pub.10.1038/nature09898
6 sg:pub.10.1038/nature10462
7 sg:pub.10.1038/nature11821
8 sg:pub.10.1038/nature11915
9 sg:pub.10.1038/nmat2420
10 sg:pub.10.1038/nphys1679
11 sg:pub.10.1038/nphys2070
12 sg:pub.10.1038/nphys2527
13 https://doi.org/10.1063/1.3693409
14 https://doi.org/10.1103/physreva.68.034303
15 https://doi.org/10.1103/physreva.69.062320
16 https://doi.org/10.1103/physreva.73.022318
17 https://doi.org/10.1103/physreva.75.012324
18 https://doi.org/10.1103/physreva.76.042336
19 https://doi.org/10.1103/physreva.77.020301
20 https://doi.org/10.1103/physreva.79.024301
21 https://doi.org/10.1103/physreva.79.040304
22 https://doi.org/10.1103/physreva.79.042339
23 https://doi.org/10.1103/physreva.81.033843
24 https://doi.org/10.1103/physreva.83.022302
25 https://doi.org/10.1103/physreva.84.010301
26 https://doi.org/10.1103/physreva.84.042341
27 https://doi.org/10.1103/physreva.84.042342
28 https://doi.org/10.1103/physreva.84.043849
29 https://doi.org/10.1103/physreva.86.021801
30 https://doi.org/10.1103/physreva.88.043802
31 https://doi.org/10.1103/physrevb.79.041302
32 https://doi.org/10.1103/physrevb.88.064105
33 https://doi.org/10.1103/physrevlett.104.177004
34 https://doi.org/10.1103/physrevlett.105.040504
35 https://doi.org/10.1103/physrevlett.105.210501
36 https://doi.org/10.1103/physrevlett.105.220501
37 https://doi.org/10.1103/physrevlett.107.220501
38 https://doi.org/10.1103/physrevlett.111.080502
39 https://doi.org/10.1103/physrevlett.111.107008
40 https://doi.org/10.1103/physrevlett.112.203603
41 https://doi.org/10.1103/physrevlett.78.3221
42 https://doi.org/10.1103/revmodphys.85.623
43 schema:datePublished 2015-05
44 schema:datePublishedReg 2015-05-01
45 schema:description Hybrid quantum systems usually consist of two or more subsystems, which may take the advantages of the different systems. Recently, the hybrid system consisting of circuit electromechanical subsystems have attracted great attention due to its advanced fabrication and scalable integrated photonic circuit techniques. Here, we propose a scheme for high fidelity quantum state transfer between a superconducting qubit and a nitrogen-vacancy center in diamond, which are coupled to a superconducting transmission-line resonator with coupling strength g1 and a nanomechanical resonator with coupling strength g2, respectively. Meanwhile, the two resonators are parametrically coupled with coupling strength J. The system dynamics, including the decoherence effects, is numerical investigated. It is found that both the small (J<<{g1,g2}) and large (J>>{g1,g2}) coupling regimes of this hybrid system can not support high fidelity quantum state transfer before significant technique advances. However, in the intermediate coupling regime (J ~ g1 ~ g2), in contrast to a conventional wisdom, high fidelity quantum information transfer can be implemented, providing a promising route towards high fidelity quantum state transfer in similar coupled resonators systems.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N4c8232e1f9404ff3960917305a4c7d8a
50 N57aee2179c434bcfb4379b62e1e0914f
51 sg:journal.1045337
52 schema:name High fidelity quantum state transfer in electromechanical systems with intermediate coupling
53 schema:pagination 6237
54 schema:productId N08cd68a35ce74e5faa4c65603f7ef169
55 N7e81b39bd3de4225bb0ce665b6aefeaa
56 Nd1d7c9d9f1984239bd0cdc5d64b8ddf4
57 Ne39d160d9c5145ea930083ee0c7ad413
58 Nf450e5164a1b4633af5fef00c9f97ca2
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025040382
60 https://doi.org/10.1038/srep06237
61 schema:sdDatePublished 2019-04-10T16:29
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Na3aa2875399445b9bd5d4f9b62b65841
64 schema:url http://www.nature.com/srep/2014/140829/srep06237/full/srep06237.html
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N08cd68a35ce74e5faa4c65603f7ef169 schema:name pubmed_id
69 schema:value 25168206
70 rdf:type schema:PropertyValue
71 N14a926706e0c40298ee8a2b8528e7708 rdf:first sg:person.01127360350.63
72 rdf:rest Nea1b93ffc9174d85a31d3c5dfb2365c6
73 N372a044fc0aa4625a10de3df6eeadaec rdf:first sg:person.01143145444.53
74 rdf:rest rdf:nil
75 N4c8232e1f9404ff3960917305a4c7d8a schema:volumeNumber 4
76 rdf:type schema:PublicationVolume
77 N57aee2179c434bcfb4379b62e1e0914f schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 N5a7c0987dbcc4e25a122c85b0f33cedf rdf:first sg:person.011374710011.80
80 rdf:rest N9873419c80114e1ebab18a29bf3917a1
81 N7e81b39bd3de4225bb0ce665b6aefeaa schema:name readcube_id
82 schema:value 774a9a5719469c4b09a56f97aff259367ebb28751b1565c2615599d8c69d17b6
83 rdf:type schema:PropertyValue
84 N9873419c80114e1ebab18a29bf3917a1 rdf:first sg:person.01277135126.50
85 rdf:rest N372a044fc0aa4625a10de3df6eeadaec
86 Na3aa2875399445b9bd5d4f9b62b65841 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nd1d7c9d9f1984239bd0cdc5d64b8ddf4 schema:name nlm_unique_id
89 schema:value 101563288
90 rdf:type schema:PropertyValue
91 Ne39d160d9c5145ea930083ee0c7ad413 schema:name dimensions_id
92 schema:value pub.1025040382
93 rdf:type schema:PropertyValue
94 Ne6e0abd9ba534bf99965b4fc99a525b0 rdf:first sg:person.01243606750.99
95 rdf:rest N5a7c0987dbcc4e25a122c85b0f33cedf
96 Nea1b93ffc9174d85a31d3c5dfb2365c6 rdf:first sg:person.01257374044.32
97 rdf:rest Ne6e0abd9ba534bf99965b4fc99a525b0
98 Nf450e5164a1b4633af5fef00c9f97ca2 schema:name doi
99 schema:value 10.1038/srep06237
100 rdf:type schema:PropertyValue
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
105 schema:name Quantum Physics
106 rdf:type schema:DefinedTerm
107 sg:grant.6977560 http://pending.schema.org/fundedItem sg:pub.10.1038/srep06237
108 rdf:type schema:MonetaryGrant
109 sg:grant.6979749 http://pending.schema.org/fundedItem sg:pub.10.1038/srep06237
110 rdf:type schema:MonetaryGrant
111 sg:grant.6989394 http://pending.schema.org/fundedItem sg:pub.10.1038/srep06237
112 rdf:type schema:MonetaryGrant
113 sg:grant.6990297 http://pending.schema.org/fundedItem sg:pub.10.1038/srep06237
114 rdf:type schema:MonetaryGrant
115 sg:journal.1045337 schema:issn 2045-2322
116 schema:name Scientific Reports
117 rdf:type schema:Periodical
118 sg:person.01127360350.63 schema:affiliation https://www.grid.ac/institutes/grid.459336.e
119 schema:familyName Zhou
120 schema:givenName Jian
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127360350.63
122 rdf:type schema:Person
123 sg:person.011374710011.80 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
124 schema:familyName Wang
125 schema:givenName Z. D.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80
127 rdf:type schema:Person
128 sg:person.01143145444.53 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
129 schema:familyName Xue
130 schema:givenName Zheng-Yuan
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143145444.53
132 rdf:type schema:Person
133 sg:person.01243606750.99 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
134 schema:familyName Yin
135 schema:givenName Zhang-qi
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243606750.99
137 rdf:type schema:Person
138 sg:person.01257374044.32 schema:affiliation https://www.grid.ac/institutes/grid.33199.31
139 schema:familyName Hu
140 schema:givenName Yong
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257374044.32
142 rdf:type schema:Person
143 sg:person.01277135126.50 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
144 schema:familyName Zhu
145 schema:givenName Shi-Liang
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277135126.50
147 rdf:type schema:Person
148 sg:pub.10.1038/451664a schema:sameAs https://app.dimensions.ai/details/publication/pub.1037543758
149 https://doi.org/10.1038/451664a
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nature09898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025452107
152 https://doi.org/10.1038/nature09898
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nature10462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043866535
155 https://doi.org/10.1038/nature10462
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nature11821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051167800
158 https://doi.org/10.1038/nature11821
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nature11915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052132570
161 https://doi.org/10.1038/nature11915
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nmat2420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006539606
164 https://doi.org/10.1038/nmat2420
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nphys1679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031333853
167 https://doi.org/10.1038/nphys1679
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nphys2070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045153976
170 https://doi.org/10.1038/nphys2070
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nphys2527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019495891
173 https://doi.org/10.1038/nphys2527
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1063/1.3693409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009999299
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physreva.68.034303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052240561
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physreva.69.062320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010131608
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physreva.73.022318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007635856
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physreva.75.012324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005225341
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physreva.76.042336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046373912
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physreva.77.020301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037549260
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physreva.79.024301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050504416
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physreva.79.040304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013112809
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physreva.79.042339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023349398
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physreva.81.033843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060507311
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physreva.83.022302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060508373
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physreva.84.010301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025406904
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physreva.84.042341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045896153
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physreva.84.042342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019607186
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physreva.84.043849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060509269
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physreva.86.021801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015271851
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physreva.88.043802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040303826
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevb.79.041302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010742604
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.88.064105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641934
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevlett.104.177004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025003865
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.105.040504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048383365
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.105.210501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051417461
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.105.220501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045584240
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.107.220501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027376182
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.111.080502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037630875
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.111.107008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023814275
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.112.203603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034486813
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevlett.78.3221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038879203
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/revmodphys.85.623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010985600
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
236 schema:name Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
239 schema:name Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
240 Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.33199.31 schema:alternateName Huazhong University of Science and Technology
243 schema:name Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
244 School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
247 schema:name National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.459336.e schema:alternateName Anhui Xinhua University
250 schema:name Anhui Xinhua University, Hefei, 230088, China
251 Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...