Revealing the structure of the world airline network View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05

AUTHORS

T Verma, N A M Araújo, H J Herrmann

ABSTRACT

Resilience of most critical infrastructures against failure of elements that appear insignificant is usually taken for granted. The World Airline Network (WAN) is an infrastructure that reduces the geographical gap between societies, both small and large, and brings forth economic gains. With the extensive use of a publicly maintained data set that contains information about airports and alternative connections between these airports, we empirically reveal that the WAN is a redundant and resilient network for long distance air travel, but otherwise breaks down completely due to removal of short and apparently insignificant connections. These short range connections with moderate number of passengers and alternate flights are the connections that keep remote parts of the world accessible. It is surprising, insofar as there exists a highly resilient and strongly connected core consisting of a small fraction of airports (around 2.3%) together with an extremely fragile star-like periphery. Yet, in spite of their relevance, more than 90% of the world airports are still interconnected upon removal of this core. With standard and unconventional removal measures we compare both empirical and topological perceptions for the fragmentation of the world. We identify how the WAN is organized into different classes of clusters based on the physical proximity of airports and analyze the consequence of this fragmentation. More... »

PAGES

5638

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep05638

DOI

http://dx.doi.org/10.1038/srep05638

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002165433

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25005934


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Computational Physics for Engineering Materials, IfB, ETH Zurich, Wofgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verma", 
        "givenName": "T", 
        "id": "sg:person.01310252416.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310252416.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Departamento de F\u00edsica, Faculdade de Ci\u00eancias, Universidade de Lisboa, P-1749-016 Lisboa, Portugal, and Centro de F\u00edsica Te\u00f3rica e Computacional, Universidade de Lisboa, Avenida Professor Gama Pinto 2, P-1649-003 Lisboa, Portugal."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ara\u00fajo", 
        "givenName": "N A M", 
        "id": "sg:person.015663040744.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663040744.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Institute of Bras\u00edlia", 
          "id": "https://www.grid.ac/institutes/grid.472905.d", 
          "name": [
            "1] Computational Physics for Engineering Materials, IfB, ETH Zurich, Wofgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland [2] Departamento de F\u00edsica, Universidade Federal do Cear\u00e1, 60451-970 Fortaleza, Cear\u00e1, Brazil."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herrmann", 
        "givenName": "H J", 
        "id": "sg:person.0637707320.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637707320.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000282463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000282463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003429390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003429390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0400087101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003759656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2005.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006977567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1009440108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007073067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35019019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269744", 
          "https://doi.org/10.1038/35019019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35019019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269744", 
          "https://doi.org/10.1038/35019019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.socnet.2009.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009304801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1110586109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011774638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601602103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016125157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(00)00018-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016331444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.025103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018686408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.025103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018686408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.018701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022021708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.018701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022021708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.040601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022945888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.040601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022945888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2013-01712-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024353958", 
          "https://doi.org/10.1140/epjst/e2013-01712-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0703740104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027402365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.200327197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032772464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0407994102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034278078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036760492", 
          "https://doi.org/10.1038/srep01344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2008/10/p10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037912856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1200398109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039719903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041529545", 
          "https://doi.org/10.1038/nphys489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041529545", 
          "https://doi.org/10.1038/nphys489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2005-00237-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042319172", 
          "https://doi.org/10.1140/epjb/e2005-00237-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2005-00237-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042319172", 
          "https://doi.org/10.1140/epjb/e2005-00237-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.188701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051436514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.188701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051436514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.188701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051436514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0040575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051480380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199206650.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098762313"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "Resilience of most critical infrastructures against failure of elements that appear insignificant is usually taken for granted. The World Airline Network (WAN) is an infrastructure that reduces the geographical gap between societies, both small and large, and brings forth economic gains. With the extensive use of a publicly maintained data set that contains information about airports and alternative connections between these airports, we empirically reveal that the WAN is a redundant and resilient network for long distance air travel, but otherwise breaks down completely due to removal of short and apparently insignificant connections. These short range connections with moderate number of passengers and alternate flights are the connections that keep remote parts of the world accessible. It is surprising, insofar as there exists a highly resilient and strongly connected core consisting of a small fraction of airports (around 2.3%) together with an extremely fragile star-like periphery. Yet, in spite of their relevance, more than 90% of the world airports are still interconnected upon removal of this core. With standard and unconventional removal measures we compare both empirical and topological perceptions for the fragmentation of the world. We identify how the WAN is organized into different classes of clusters based on the physical proximity of airports and analyze the consequence of this fragmentation. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep05638", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3799437", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Revealing the structure of the world airline network", 
    "pagination": "5638", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0a4faa1979a9ce8a6d556bb1139a98eff5817a6352cbbab142632b36a42a1f3f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25005934"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep05638"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002165433"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep05638", 
      "https://app.dimensions.ai/details/publication/pub.1002165433"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/srep05638"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep05638'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep05638'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep05638'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep05638'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep05638 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N206b9946e0b84e3c8f878834a249a4b8
4 schema:citation sg:pub.10.1038/30918
5 sg:pub.10.1038/35019019
6 sg:pub.10.1038/nphys489
7 sg:pub.10.1038/srep01344
8 sg:pub.10.1140/epjb/e2005-00237-9
9 sg:pub.10.1140/epjst/e2013-01712-8
10 https://doi.org/10.1016/j.physrep.2005.10.009
11 https://doi.org/10.1016/j.socnet.2009.02.002
12 https://doi.org/10.1016/s0378-4371(00)00018-2
13 https://doi.org/10.1073/pnas.0400087101
14 https://doi.org/10.1073/pnas.0407994102
15 https://doi.org/10.1073/pnas.0601602103
16 https://doi.org/10.1073/pnas.0703740104
17 https://doi.org/10.1073/pnas.1009440108
18 https://doi.org/10.1073/pnas.1110586109
19 https://doi.org/10.1073/pnas.1200398109
20 https://doi.org/10.1073/pnas.200327197
21 https://doi.org/10.1088/1742-5468/2008/10/p10008
22 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
23 https://doi.org/10.1103/physreve.69.025103
24 https://doi.org/10.1103/physrevlett.102.018701
25 https://doi.org/10.1103/physrevlett.85.5468
26 https://doi.org/10.1103/physrevlett.86.3682
27 https://doi.org/10.1103/physrevlett.94.188701
28 https://doi.org/10.1103/physrevlett.96.040601
29 https://doi.org/10.1103/revmodphys.74.47
30 https://doi.org/10.1371/journal.pone.0040575
31 schema:datePublished 2015-05
32 schema:datePublishedReg 2015-05-01
33 schema:description Resilience of most critical infrastructures against failure of elements that appear insignificant is usually taken for granted. The World Airline Network (WAN) is an infrastructure that reduces the geographical gap between societies, both small and large, and brings forth economic gains. With the extensive use of a publicly maintained data set that contains information about airports and alternative connections between these airports, we empirically reveal that the WAN is a redundant and resilient network for long distance air travel, but otherwise breaks down completely due to removal of short and apparently insignificant connections. These short range connections with moderate number of passengers and alternate flights are the connections that keep remote parts of the world accessible. It is surprising, insofar as there exists a highly resilient and strongly connected core consisting of a small fraction of airports (around 2.3%) together with an extremely fragile star-like periphery. Yet, in spite of their relevance, more than 90% of the world airports are still interconnected upon removal of this core. With standard and unconventional removal measures we compare both empirical and topological perceptions for the fragmentation of the world. We identify how the WAN is organized into different classes of clusters based on the physical proximity of airports and analyze the consequence of this fragmentation.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N1ccf55c092a34c948774bef6f25250cb
38 N35f51c1400794812885068975445105e
39 sg:journal.1045337
40 schema:name Revealing the structure of the world airline network
41 schema:pagination 5638
42 schema:productId N2353d40ef90b466cb537444b424dab66
43 N34ff1b47211d4fc9a7501439c4634cf5
44 N3b72a46b2dab423394d25cd5bb5ca525
45 N4d568bf41ef044b7a862205516561a26
46 Nc24c7e09e14744bd9b8dc3380c15f307
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002165433
48 https://doi.org/10.1038/srep05638
49 schema:sdDatePublished 2019-04-11T00:54
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N90db96c2e4fd4033bc46402712a4a9d1
52 schema:url http://www.nature.com/articles/srep05638
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N1ccf55c092a34c948774bef6f25250cb schema:volumeNumber 4
57 rdf:type schema:PublicationVolume
58 N206b9946e0b84e3c8f878834a249a4b8 rdf:first sg:person.01310252416.74
59 rdf:rest Nf9fac4c5d0c6436f81cd1b20eb6544ae
60 N2353d40ef90b466cb537444b424dab66 schema:name doi
61 schema:value 10.1038/srep05638
62 rdf:type schema:PropertyValue
63 N34ff1b47211d4fc9a7501439c4634cf5 schema:name pubmed_id
64 schema:value 25005934
65 rdf:type schema:PropertyValue
66 N35f51c1400794812885068975445105e schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N3b72a46b2dab423394d25cd5bb5ca525 schema:name nlm_unique_id
69 schema:value 101563288
70 rdf:type schema:PropertyValue
71 N4d568bf41ef044b7a862205516561a26 schema:name dimensions_id
72 schema:value pub.1002165433
73 rdf:type schema:PropertyValue
74 N59e912085d8047fe9a1836455ec429a9 schema:name Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal, and Centro de Física Teórica e Computacional, Universidade de Lisboa, Avenida Professor Gama Pinto 2, P-1649-003 Lisboa, Portugal.
75 rdf:type schema:Organization
76 N90db96c2e4fd4033bc46402712a4a9d1 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nc24c7e09e14744bd9b8dc3380c15f307 schema:name readcube_id
79 schema:value 0a4faa1979a9ce8a6d556bb1139a98eff5817a6352cbbab142632b36a42a1f3f
80 rdf:type schema:PropertyValue
81 Ne6e0d0486e2848b7831fa6a6e6c5f47c rdf:first sg:person.0637707320.15
82 rdf:rest rdf:nil
83 Nf9fac4c5d0c6436f81cd1b20eb6544ae rdf:first sg:person.015663040744.87
84 rdf:rest Ne6e0d0486e2848b7831fa6a6e6c5f47c
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information Systems
90 rdf:type schema:DefinedTerm
91 sg:grant.3799437 http://pending.schema.org/fundedItem sg:pub.10.1038/srep05638
92 rdf:type schema:MonetaryGrant
93 sg:journal.1045337 schema:issn 2045-2322
94 schema:name Scientific Reports
95 rdf:type schema:Periodical
96 sg:person.01310252416.74 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
97 schema:familyName Verma
98 schema:givenName T
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310252416.74
100 rdf:type schema:Person
101 sg:person.015663040744.87 schema:affiliation N59e912085d8047fe9a1836455ec429a9
102 schema:familyName Araújo
103 schema:givenName N A M
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663040744.87
105 rdf:type schema:Person
106 sg:person.0637707320.15 schema:affiliation https://www.grid.ac/institutes/grid.472905.d
107 schema:familyName Herrmann
108 schema:givenName H J
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637707320.15
110 rdf:type schema:Person
111 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
112 https://doi.org/10.1038/30918
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/35019019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008269744
115 https://doi.org/10.1038/35019019
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nphys489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041529545
118 https://doi.org/10.1038/nphys489
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/srep01344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036760492
121 https://doi.org/10.1038/srep01344
122 rdf:type schema:CreativeWork
123 sg:pub.10.1140/epjb/e2005-00237-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042319172
124 https://doi.org/10.1140/epjb/e2005-00237-9
125 rdf:type schema:CreativeWork
126 sg:pub.10.1140/epjst/e2013-01712-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024353958
127 https://doi.org/10.1140/epjst/e2013-01712-8
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.physrep.2005.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006977567
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.socnet.2009.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009304801
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0378-4371(00)00018-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016331444
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1073/pnas.0400087101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003759656
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1073/pnas.0407994102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034278078
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1073/pnas.0601602103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125157
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.0703740104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027402365
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1073/pnas.1009440108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007073067
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1073/pnas.1110586109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011774638
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1073/pnas.1200398109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039719903
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1073/pnas.200327197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032772464
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1088/1742-5468/2008/10/p10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037912856
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098762313
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physreve.69.025103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018686408
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.102.018701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022021708
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.85.5468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000282463
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.86.3682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003429390
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.94.188701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051436514
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.96.040601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022945888
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1371/journal.pone.0040575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051480380
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.472905.d schema:alternateName Federal Institute of Brasília
172 schema:name 1] Computational Physics for Engineering Materials, IfB, ETH Zurich, Wofgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland [2] Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil.
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
175 schema:name Computational Physics for Engineering Materials, IfB, ETH Zurich, Wofgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland.
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...