Breakdown of Richardson's Law in Electron Emission from Individual Self-Joule-Heated Carbon Nanotubes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05

AUTHORS

Xianlong Wei, Sheng Wang, Qing Chen, Lianmao Peng

ABSTRACT

Probing the validity of classical macroscopic physical laws at the nanoscale is important for nanoscience research. Herein, we report on experimental evidence that electron emission from individual hot carbon nanotubes (CNTs) heated by self-Joule-heating does not obey Richardson's law of thermionic emission. By using an in-situ multi-probe measurement technique, electron emission density (J) and temperature (T) of individual self-Joule-heated CNTs are simultaneously determined. Experimental ln(J/T(2)) - 1/T plots are found to exhibit an upward bending feature deviating from the straight lines in Richardson plots, and the measured electron emission density is more than one order of magnitude higher than that predicted by Richardson's law. The breakdown of Richardson's law implies a much better electron emission performance of individual CNTs as compared to their macroscopic allotropes and clusters, and the need of new theoretical descriptions of electron emission from individual low-dimensional nanostructures. More... »

PAGES

5102

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep05102

DOI

http://dx.doi.org/10.1038/srep05102

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001102073

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24869719


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, P. R. China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Xianlong", 
        "id": "sg:person.01035741507.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035741507.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, P. R. China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Sheng", 
        "id": "sg:person.0752733733.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752733733.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, P. R. China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Qing", 
        "id": "sg:person.01020455202.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020455202.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, P. R. China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Lianmao", 
        "id": "sg:person.010515521607.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0957-4484/19/35/355304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009873600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1928.0222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014784640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.026804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020568757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.026804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020568757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024439756", 
          "https://doi.org/10.1038/nature01233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024439756", 
          "https://doi.org/10.1038/nature01233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultramic.2009.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032409624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200802560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037257289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200800157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041211859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6223(00)00322-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041524681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1928.0091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045858187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4802973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048764907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1928.0018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053322433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0730817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0730817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103861p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103861p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802777g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802777g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn101719r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn200444x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056223314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1558900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057720002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1790597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057822368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2208941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057847217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.23.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060444056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.23.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060444056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.9391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.9391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.235412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.235412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.045423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060621850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.045423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060621850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.235413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.235413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.195462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.195462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.197602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.197602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.21.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.21.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.32.l107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063050933"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "Probing the validity of classical macroscopic physical laws at the nanoscale is important for nanoscience research. Herein, we report on experimental evidence that electron emission from individual hot carbon nanotubes (CNTs) heated by self-Joule-heating does not obey Richardson's law of thermionic emission. By using an in-situ multi-probe measurement technique, electron emission density (J) and temperature (T) of individual self-Joule-heated CNTs are simultaneously determined. Experimental ln(J/T(2)) - 1/T plots are found to exhibit an upward bending feature deviating from the straight lines in Richardson plots, and the measured electron emission density is more than one order of magnitude higher than that predicted by Richardson's law. The breakdown of Richardson's law implies a much better electron emission performance of individual CNTs as compared to their macroscopic allotropes and clusters, and the need of new theoretical descriptions of electron emission from individual low-dimensional nanostructures. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep05102", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7180959", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7198155", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Breakdown of Richardson's Law in Electron Emission from Individual Self-Joule-Heated Carbon Nanotubes", 
    "pagination": "5102", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0540308427220ce7f887e279d95b6c0a2f46f811dd637eb3bb13952d354c3c34"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24869719"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep05102"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001102073"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep05102", 
      "https://app.dimensions.ai/details/publication/pub.1001102073"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2014/140529/srep05102/full/srep05102.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep05102'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep05102'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep05102'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep05102'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep05102 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author N8f6cd9004e564679bddc5aa9544ba93a
4 schema:citation sg:pub.10.1038/nature01233
5 https://doi.org/10.1002/adma.200802560
6 https://doi.org/10.1002/smll.200800157
7 https://doi.org/10.1016/j.ultramic.2009.11.007
8 https://doi.org/10.1016/s0008-6223(00)00322-5
9 https://doi.org/10.1021/nl0730817
10 https://doi.org/10.1021/nl103861p
11 https://doi.org/10.1021/nl802777g
12 https://doi.org/10.1021/nn101719r
13 https://doi.org/10.1021/nn200444x
14 https://doi.org/10.1063/1.1558900
15 https://doi.org/10.1063/1.1790597
16 https://doi.org/10.1063/1.2208941
17 https://doi.org/10.1063/1.4802973
18 https://doi.org/10.1088/0957-4484/19/35/355304
19 https://doi.org/10.1098/rspa.1928.0018
20 https://doi.org/10.1098/rspa.1928.0091
21 https://doi.org/10.1098/rspa.1928.0222
22 https://doi.org/10.1103/physrev.23.153
23 https://doi.org/10.1103/physrevb.55.9391
24 https://doi.org/10.1103/physrevb.73.235412
25 https://doi.org/10.1103/physrevb.76.045423
26 https://doi.org/10.1103/physrevb.76.235413
27 https://doi.org/10.1103/physrevb.84.195462
28 https://doi.org/10.1103/physrevlett.89.197602
29 https://doi.org/10.1103/physrevlett.92.026804
30 https://doi.org/10.1103/revmodphys.21.185
31 https://doi.org/10.1143/jjap.32.l107
32 schema:datePublished 2015-05
33 schema:datePublishedReg 2015-05-01
34 schema:description Probing the validity of classical macroscopic physical laws at the nanoscale is important for nanoscience research. Herein, we report on experimental evidence that electron emission from individual hot carbon nanotubes (CNTs) heated by self-Joule-heating does not obey Richardson's law of thermionic emission. By using an in-situ multi-probe measurement technique, electron emission density (J) and temperature (T) of individual self-Joule-heated CNTs are simultaneously determined. Experimental ln(J/T(2)) - 1/T plots are found to exhibit an upward bending feature deviating from the straight lines in Richardson plots, and the measured electron emission density is more than one order of magnitude higher than that predicted by Richardson's law. The breakdown of Richardson's law implies a much better electron emission performance of individual CNTs as compared to their macroscopic allotropes and clusters, and the need of new theoretical descriptions of electron emission from individual low-dimensional nanostructures.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N534783f0f27443c29188f0e15548a093
39 N9192c32d9e354c1b96f42fdef389351d
40 sg:journal.1045337
41 schema:name Breakdown of Richardson's Law in Electron Emission from Individual Self-Joule-Heated Carbon Nanotubes
42 schema:pagination 5102
43 schema:productId N8c913944165d471991fe1cfdf1ec28b2
44 N91bc6260ab494aa5971aaab5f3f266dc
45 Nadbdc9535414430c858904cdd6b51033
46 Nb7a93162db0e4fc2b07cd6e35267c78d
47 Nbcb2fd8809084cfeadcf442a32c2c462
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001102073
49 https://doi.org/10.1038/srep05102
50 schema:sdDatePublished 2019-04-10T22:19
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N2de1865f9f344335a8c674fd570ef1d7
53 schema:url http://www.nature.com/srep/2014/140529/srep05102/full/srep05102.html
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N232583d232a64a5e8c61fb97e7c74818 rdf:first sg:person.0752733733.34
58 rdf:rest N7657f0ed932540719822583037202eb9
59 N2de1865f9f344335a8c674fd570ef1d7 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N534783f0f27443c29188f0e15548a093 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N7657f0ed932540719822583037202eb9 rdf:first sg:person.01020455202.54
64 rdf:rest N7791ed6fee074f51ac7f2995c004d1e7
65 N7791ed6fee074f51ac7f2995c004d1e7 rdf:first sg:person.010515521607.58
66 rdf:rest rdf:nil
67 N8c913944165d471991fe1cfdf1ec28b2 schema:name dimensions_id
68 schema:value pub.1001102073
69 rdf:type schema:PropertyValue
70 N8f6cd9004e564679bddc5aa9544ba93a rdf:first sg:person.01035741507.45
71 rdf:rest N232583d232a64a5e8c61fb97e7c74818
72 N9192c32d9e354c1b96f42fdef389351d schema:volumeNumber 4
73 rdf:type schema:PublicationVolume
74 N91bc6260ab494aa5971aaab5f3f266dc schema:name readcube_id
75 schema:value 0540308427220ce7f887e279d95b6c0a2f46f811dd637eb3bb13952d354c3c34
76 rdf:type schema:PropertyValue
77 Nadbdc9535414430c858904cdd6b51033 schema:name pubmed_id
78 schema:value 24869719
79 rdf:type schema:PropertyValue
80 Nb7a93162db0e4fc2b07cd6e35267c78d schema:name doi
81 schema:value 10.1038/srep05102
82 rdf:type schema:PropertyValue
83 Nbcb2fd8809084cfeadcf442a32c2c462 schema:name nlm_unique_id
84 schema:value 101563288
85 rdf:type schema:PropertyValue
86 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
87 schema:name Technology
88 rdf:type schema:DefinedTerm
89 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
90 schema:name Nanotechnology
91 rdf:type schema:DefinedTerm
92 sg:grant.7180959 http://pending.schema.org/fundedItem sg:pub.10.1038/srep05102
93 rdf:type schema:MonetaryGrant
94 sg:grant.7198155 http://pending.schema.org/fundedItem sg:pub.10.1038/srep05102
95 rdf:type schema:MonetaryGrant
96 sg:journal.1045337 schema:issn 2045-2322
97 schema:name Scientific Reports
98 rdf:type schema:Periodical
99 sg:person.01020455202.54 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
100 schema:familyName Chen
101 schema:givenName Qing
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020455202.54
103 rdf:type schema:Person
104 sg:person.01035741507.45 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
105 schema:familyName Wei
106 schema:givenName Xianlong
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035741507.45
108 rdf:type schema:Person
109 sg:person.010515521607.58 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
110 schema:familyName Peng
111 schema:givenName Lianmao
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58
113 rdf:type schema:Person
114 sg:person.0752733733.34 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
115 schema:familyName Wang
116 schema:givenName Sheng
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752733733.34
118 rdf:type schema:Person
119 sg:pub.10.1038/nature01233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024439756
120 https://doi.org/10.1038/nature01233
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/adma.200802560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037257289
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/smll.200800157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041211859
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.ultramic.2009.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032409624
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0008-6223(00)00322-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041524681
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1021/nl0730817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217616
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/nl103861p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218339
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/nl802777g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221594
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1021/nn101719r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222806
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/nn200444x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056223314
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.1558900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057720002
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.1790597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057822368
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.2208941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057847217
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.4802973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048764907
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1088/0957-4484/19/35/355304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009873600
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1098/rspa.1928.0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053322433
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1098/rspa.1928.0091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045858187
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1098/rspa.1928.0222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014784640
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrev.23.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060444056
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevb.55.9391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584921
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevb.73.235412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060617911
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevb.76.045423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060621850
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevb.76.235413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060623289
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.84.195462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060637469
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.89.197602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825557
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.92.026804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020568757
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/revmodphys.21.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060837345
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1143/jjap.32.l107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063050933
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
177 schema:name Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, P. R. China.
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...