Shock waves on complex networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05

AUTHORS

Enys Mones, Nuno A M Araújo, Tamás Vicsek, Hans J Herrmann

ABSTRACT

Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce the concept of node-basin size, a purely topological property which we show to be strongly correlated to the average load of a node. More... »

PAGES

4949

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep04949

DOI

http://dx.doi.org/10.1038/srep04949

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000286435

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24821422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "1] Department of Biological Physics, E\u00f6tv\u00f6s Lor\u00e1nd University, P\u00e1zm\u00e1ny P\u00e9ter S\u00e9t\u00e1ny. 1/A, H-1117 Budapest, Hungary [2] Computational Physics for Engineering Materials, IfB, ETH Z\u00fcrich, Wolfgang-Pauli-Strasse 27, CH-8093 Z\u00fcrich, Switzerland."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mones", 
        "givenName": "Enys", 
        "id": "sg:person.01055736117.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055736117.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Computational Physics for Engineering Materials, IfB, ETH Z\u00fcrich, Wolfgang-Pauli-Strasse 27, CH-8093 Z\u00fcrich, Switzerland."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ara\u00fajo", 
        "givenName": "Nuno A M", 
        "id": "sg:person.015663040744.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663040744.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "E\u00f6tv\u00f6s Lor\u00e1nd University", 
          "id": "https://www.grid.ac/institutes/grid.5591.8", 
          "name": [
            "1] Department of Biological Physics, E\u00f6tv\u00f6s Lor\u00e1nd University, P\u00e1zm\u00e1ny P\u00e9ter S\u00e9t\u00e1ny. 1/A, H-1117 Budapest, Hungary [2] Biological Physics Research Group of HAS, P\u00e1zm\u00e1ny P\u00e9ter stny. 1/A, H-1117 Budapest, Hungary."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vicsek", 
        "givenName": "Tam\u00e1s", 
        "id": "sg:person.01370021645.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370021645.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Institute of Bras\u00edlia", 
          "id": "https://www.grid.ac/institutes/grid.472905.d", 
          "name": [
            "1] Computational Physics for Engineering Materials, IfB, ETH Z\u00fcrich, Wolfgang-Pauli-Strasse 27, CH-8093 Z\u00fcrich, Switzerland [2] Departamento de F\u00edsica, Universidade Federal do Cear\u00e1, 60451-970 Fortaleza, Cear\u00e1, Brazil."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herrmann", 
        "givenName": "Hans J", 
        "id": "sg:person.0637707320.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637707320.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physics.6.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002052189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physics.6.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002052189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1009440108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007073067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.082090499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007102528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.228301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008503347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.228301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008503347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2011.07.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011022989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1110586109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011774638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.018701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022021708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.018701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022021708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(99)00117-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022980674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.148701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033871448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.148701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033871448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-5678-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035704995", 
          "https://doi.org/10.1007/978-1-4020-5678-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-5678-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035704995", 
          "https://doi.org/10.1007/978-1-4020-5678-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jedc.2012.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035724296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.078701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039276430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.078701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039276430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-1745-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039474300", 
          "https://doi.org/10.1007/978-94-010-1745-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-1745-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039474300", 
          "https://doi.org/10.1007/978-94-010-1745-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1200398109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039719903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-5116-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040766528", 
          "https://doi.org/10.1007/978-3-0348-5116-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-5116-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040766528", 
          "https://doi.org/10.1007/978-3-0348-5116-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042579156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042579156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0097-3165(78)90059-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044265120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jedc.2012.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045476666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.3240060204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051332521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2009.0410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051560288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2006-933643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057458474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.4877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.4877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/59.780909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061194744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2005.846178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061776804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3423786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062119831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3607836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062133472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.64.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063115259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itsc.2011.6082837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093423765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199206650.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098762313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4159/harvard.9780674432390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099309498"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce the concept of node-basin size, a purely topological property which we show to be strongly correlated to the average load of a node. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep04949", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3773822", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3799437", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Shock waves on complex networks", 
    "pagination": "4949", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "015c9f5b5fee2c9cfa167c4ac68f695e10fc6ddec6a9e6eb6164064d93c0f058"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24821422"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep04949"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000286435"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep04949", 
      "https://app.dimensions.ai/details/publication/pub.1000286435"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2014/140513/srep04949/full/srep04949.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep04949'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep04949'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep04949'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep04949'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep04949 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N5fdcbc69fd28463aa69d21880d16480a
4 schema:citation sg:pub.10.1007/978-1-4020-5678-9
5 sg:pub.10.1007/978-3-0348-5116-9
6 sg:pub.10.1007/978-94-010-1745-9
7 sg:pub.10.1038/30918
8 https://doi.org/10.1002/rsa.3240060204
9 https://doi.org/10.1016/0097-3165(78)90059-6
10 https://doi.org/10.1016/j.jedc.2012.03.005
11 https://doi.org/10.1016/j.jedc.2012.04.001
12 https://doi.org/10.1016/j.physa.2011.07.046
13 https://doi.org/10.1016/s0370-1573(99)00117-9
14 https://doi.org/10.1055/s-2006-933643
15 https://doi.org/10.1073/pnas.082090499
16 https://doi.org/10.1073/pnas.1009440108
17 https://doi.org/10.1073/pnas.1110586109
18 https://doi.org/10.1073/pnas.1200398109
19 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
20 https://doi.org/10.1098/rspa.2009.0410
21 https://doi.org/10.1103/physics.6.90
22 https://doi.org/10.1103/physreve.61.4877
23 https://doi.org/10.1103/physrevlett.102.018701
24 https://doi.org/10.1103/physrevlett.111.078701
25 https://doi.org/10.1103/physrevlett.59.381
26 https://doi.org/10.1103/physrevlett.68.1244
27 https://doi.org/10.1103/physrevlett.88.228301
28 https://doi.org/10.1103/physrevlett.91.148701
29 https://doi.org/10.1103/revmodphys.73.1067
30 https://doi.org/10.1103/revmodphys.74.47
31 https://doi.org/10.1109/59.780909
32 https://doi.org/10.1109/itsc.2011.6082837
33 https://doi.org/10.1109/tpwrs.2005.846178
34 https://doi.org/10.1115/1.3423786
35 https://doi.org/10.1115/1.3607836
36 https://doi.org/10.1143/jpsj.64.327
37 https://doi.org/10.4159/harvard.9780674432390
38 schema:datePublished 2015-05
39 schema:datePublishedReg 2015-05-01
40 schema:description Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce the concept of node-basin size, a purely topological property which we show to be strongly correlated to the average load of a node.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N5055056bc45c4f90804b5818baae01de
45 N97b7fa6211e0438398c87debac8486f2
46 sg:journal.1045337
47 schema:name Shock waves on complex networks
48 schema:pagination 4949
49 schema:productId N33f52d575844467c983705aaea314aa1
50 N3544a571a0f24125a9f8555eb9578c50
51 N478c4d724bfb402a972ddafea8215a30
52 N552127e87c2f4f36b8ad6469a2b535cd
53 Nadc6fff98649454f95af1f55c107c207
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000286435
55 https://doi.org/10.1038/srep04949
56 schema:sdDatePublished 2019-04-10T19:44
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N2f5cf3ab1d974403a57c33dfd21e3755
59 schema:url http://www.nature.com/srep/2014/140513/srep04949/full/srep04949.html
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N2f5cf3ab1d974403a57c33dfd21e3755 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N33f52d575844467c983705aaea314aa1 schema:name nlm_unique_id
66 schema:value 101563288
67 rdf:type schema:PropertyValue
68 N3544a571a0f24125a9f8555eb9578c50 schema:name doi
69 schema:value 10.1038/srep04949
70 rdf:type schema:PropertyValue
71 N478c4d724bfb402a972ddafea8215a30 schema:name pubmed_id
72 schema:value 24821422
73 rdf:type schema:PropertyValue
74 N5055056bc45c4f90804b5818baae01de schema:volumeNumber 4
75 rdf:type schema:PublicationVolume
76 N552127e87c2f4f36b8ad6469a2b535cd schema:name dimensions_id
77 schema:value pub.1000286435
78 rdf:type schema:PropertyValue
79 N5fdcbc69fd28463aa69d21880d16480a rdf:first sg:person.01055736117.36
80 rdf:rest N64693ecc1e3d482b8ba2674dc2af0181
81 N638f673e6f914f019427501d1fa352ea schema:name 1] Department of Biological Physics, Eötvös Loránd University, Pázmány Péter Sétány. 1/A, H-1117 Budapest, Hungary [2] Computational Physics for Engineering Materials, IfB, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich, Switzerland.
82 rdf:type schema:Organization
83 N64693ecc1e3d482b8ba2674dc2af0181 rdf:first sg:person.015663040744.87
84 rdf:rest Nd2c9986c142f496f8f4695e972bd7452
85 N97b7fa6211e0438398c87debac8486f2 schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 Nadc6fff98649454f95af1f55c107c207 schema:name readcube_id
88 schema:value 015c9f5b5fee2c9cfa167c4ac68f695e10fc6ddec6a9e6eb6164064d93c0f058
89 rdf:type schema:PropertyValue
90 Nb8e1a685914743bdb4075cae661fb892 rdf:first sg:person.0637707320.15
91 rdf:rest rdf:nil
92 Nd2c9986c142f496f8f4695e972bd7452 rdf:first sg:person.01370021645.17
93 rdf:rest Nb8e1a685914743bdb4075cae661fb892
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information Systems
99 rdf:type schema:DefinedTerm
100 sg:grant.3773822 http://pending.schema.org/fundedItem sg:pub.10.1038/srep04949
101 rdf:type schema:MonetaryGrant
102 sg:grant.3799437 http://pending.schema.org/fundedItem sg:pub.10.1038/srep04949
103 rdf:type schema:MonetaryGrant
104 sg:journal.1045337 schema:issn 2045-2322
105 schema:name Scientific Reports
106 rdf:type schema:Periodical
107 sg:person.01055736117.36 schema:affiliation N638f673e6f914f019427501d1fa352ea
108 schema:familyName Mones
109 schema:givenName Enys
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055736117.36
111 rdf:type schema:Person
112 sg:person.01370021645.17 schema:affiliation https://www.grid.ac/institutes/grid.5591.8
113 schema:familyName Vicsek
114 schema:givenName Tamás
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370021645.17
116 rdf:type schema:Person
117 sg:person.015663040744.87 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
118 schema:familyName Araújo
119 schema:givenName Nuno A M
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663040744.87
121 rdf:type schema:Person
122 sg:person.0637707320.15 schema:affiliation https://www.grid.ac/institutes/grid.472905.d
123 schema:familyName Herrmann
124 schema:givenName Hans J
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637707320.15
126 rdf:type schema:Person
127 sg:pub.10.1007/978-1-4020-5678-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035704995
128 https://doi.org/10.1007/978-1-4020-5678-9
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-3-0348-5116-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040766528
131 https://doi.org/10.1007/978-3-0348-5116-9
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-94-010-1745-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039474300
134 https://doi.org/10.1007/978-94-010-1745-9
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
137 https://doi.org/10.1038/30918
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/rsa.3240060204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051332521
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0097-3165(78)90059-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044265120
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jedc.2012.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035724296
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jedc.2012.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045476666
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.physa.2011.07.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011022989
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0370-1573(99)00117-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022980674
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1055/s-2006-933643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057458474
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1073/pnas.082090499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007102528
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.1009440108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007073067
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.1110586109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011774638
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1073/pnas.1200398109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039719903
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098762313
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1098/rspa.2009.0410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051560288
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physics.6.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002052189
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physreve.61.4877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060725112
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.102.018701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022021708
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.111.078701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039276430
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.59.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796158
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.68.1244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804094
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.88.228301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008503347
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.91.148701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033871448
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/revmodphys.73.1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042579156
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/59.780909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061194744
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/itsc.2011.6082837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093423765
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/tpwrs.2005.846178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061776804
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1115/1.3423786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062119831
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1115/1.3607836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062133472
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1143/jpsj.64.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063115259
196 rdf:type schema:CreativeWork
197 https://doi.org/10.4159/harvard.9780674432390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099309498
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.472905.d schema:alternateName Federal Institute of Brasília
200 schema:name 1] Computational Physics for Engineering Materials, IfB, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich, Switzerland [2] Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil.
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.5591.8 schema:alternateName Eötvös Loránd University
203 schema:name 1] Department of Biological Physics, Eötvös Loránd University, Pázmány Péter Sétány. 1/A, H-1117 Budapest, Hungary [2] Biological Physics Research Group of HAS, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary.
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
206 schema:name Computational Physics for Engineering Materials, IfB, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich, Switzerland.
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...