Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05

AUTHORS

Yun Zhang, Tiaoxing Wei, Wenjing Dong, Kenan Zhang, Yan Sun, Xin Chen, Ning Dai

ABSTRACT

Spatial order or periodicity is usually required and constructed with tens of nanometers in the feature size, which makes it difficult to process the near-perfect metamaterial absorbers (PMAs) working in the visible range in large-area and mass-production scale. Although many established technologies and theoretical modeling methods used for order-based metamaterials, aperiodic or disordered structures have been gradually recognized to achieve similar functionalities for which the ordered structures are overwhelmingly used. Here, we demonstrated the vapor-deposited 'amorphous' metamaterials as controlled-reflectance surfaces and tunable PMAs without the use of the lithographically ordered arrays, the prefabricated colloidal metal nanoparticles (MNPs) or the multilayer of nanoparticles. The flexible construction, the control of the monolayer of MNPs and the atomic-layer-deposited (ALD) dielectric spacer layer provide more insight for understanding the controlled-reflectance surfaces. Such processes have a few key advantages of CMOS-compatible simple processing, low cost and large-area plating, allowing the PMAs to be flexibly constructed in mass-production scale. More... »

PAGES

4850

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep04850

DOI

http://dx.doi.org/10.1038/srep04850

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035608822

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24810434


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai Institute of Technical Physics", 
          "id": "https://www.grid.ac/institutes/grid.458467.c", 
          "name": [
            "National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yun", 
        "id": "sg:person.01347453060.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347453060.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Institute of Technical Physics", 
          "id": "https://www.grid.ac/institutes/grid.458467.c", 
          "name": [
            "National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Tiaoxing", 
        "id": "sg:person.01220511140.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220511140.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Institute of Technical Physics", 
          "id": "https://www.grid.ac/institutes/grid.458467.c", 
          "name": [
            "National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Wenjing", 
        "id": "sg:person.01334737540.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334737540.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Institute of Technical Physics", 
          "id": "https://www.grid.ac/institutes/grid.458467.c", 
          "name": [
            "National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Kenan", 
        "id": "sg:person.01150705212.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150705212.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Institute of Technical Physics", 
          "id": "https://www.grid.ac/institutes/grid.458467.c", 
          "name": [
            "National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Yan", 
        "id": "sg:person.010456636526.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010456636526.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Institute of Technical Physics", 
          "id": "https://www.grid.ac/institutes/grid.458467.c", 
          "name": [
            "National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xin", 
        "id": "sg:person.0740275360.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740275360.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Institute of Technical Physics", 
          "id": "https://www.grid.ac/institutes/grid.458467.c", 
          "name": [
            "National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Ning", 
        "id": "sg:person.0633700011.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633700011.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00339-012-7344-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000943264", 
          "https://doi.org/10.1007/s00339-012-7344-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201200674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003176915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2012.343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004740923", 
          "https://doi.org/10.1038/nphoton.2012.343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.207403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006383786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.207403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006383786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9041033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006834111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9041033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006834111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.203905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008546640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.203905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008546640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080872f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013722957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080872f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013722957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015290365", 
          "https://doi.org/10.1038/nature11615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.23.000434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015639103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1133628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019262685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021086028", 
          "https://doi.org/10.1038/nphoton.2013.29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.125104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028312623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.125104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028312623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr900056b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028801165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr900056b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028801165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1058847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029679857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.207402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029858791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.207402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029858791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.16.009222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034291995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037112953", 
          "https://doi.org/10.1038/35570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044968517", 
          "https://doi.org/10.1038/nmat3292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2006.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047194243", 
          "https://doi.org/10.1038/nphoton.2006.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2006.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047194243", 
          "https://doi.org/10.1038/nphoton.2006.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lpor.201000046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050273878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201102646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053033813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00258a779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054986049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl401641v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4808206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058076838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2040-8978/16/2/025002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059180344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.165107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060635450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.165107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060635450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.3966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.3966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1096796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.38.002247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065233967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aps.2002.1016106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093204557"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "Spatial order or periodicity is usually required and constructed with tens of nanometers in the feature size, which makes it difficult to process the near-perfect metamaterial absorbers (PMAs) working in the visible range in large-area and mass-production scale. Although many established technologies and theoretical modeling methods used for order-based metamaterials, aperiodic or disordered structures have been gradually recognized to achieve similar functionalities for which the ordered structures are overwhelmingly used. Here, we demonstrated the vapor-deposited 'amorphous' metamaterials as controlled-reflectance surfaces and tunable PMAs without the use of the lithographically ordered arrays, the prefabricated colloidal metal nanoparticles (MNPs) or the multilayer of nanoparticles. The flexible construction, the control of the monolayer of MNPs and the atomic-layer-deposited (ALD) dielectric spacer layer provide more insight for understanding the controlled-reflectance surfaces. Such processes have a few key advantages of CMOS-compatible simple processing, low cost and large-area plating, allowing the PMAs to be flexibly constructed in mass-production scale. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep04850", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7187828", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles", 
    "pagination": "4850", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a9a0918391d21f13b7674141d096dd2ae4d5795a79c146980ae9cda7b62c76ff"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24810434"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep04850"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035608822"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep04850", 
      "https://app.dimensions.ai/details/publication/pub.1035608822"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2014/140509/srep04850/full/srep04850.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep04850'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep04850'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep04850'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep04850'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep04850 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Neae847b8b672457ab75336f1f14223a4
4 schema:citation sg:pub.10.1007/s00339-012-7344-1
5 sg:pub.10.1038/35570
6 sg:pub.10.1038/nature11615
7 sg:pub.10.1038/nmat3292
8 sg:pub.10.1038/nphoton.2006.49
9 sg:pub.10.1038/nphoton.2012.343
10 sg:pub.10.1038/nphoton.2013.29
11 https://doi.org/10.1002/adma.201102646
12 https://doi.org/10.1002/adma.201200674
13 https://doi.org/10.1002/lpor.201000046
14 https://doi.org/10.1021/ac00258a779
15 https://doi.org/10.1021/cr900056b
16 https://doi.org/10.1021/nl080872f
17 https://doi.org/10.1021/nl401641v
18 https://doi.org/10.1021/nl9041033
19 https://doi.org/10.1063/1.4808206
20 https://doi.org/10.1088/2040-8978/16/2/025002
21 https://doi.org/10.1103/physrevb.6.4370
22 https://doi.org/10.1103/physrevb.79.125104
23 https://doi.org/10.1103/physrevb.83.165107
24 https://doi.org/10.1103/physrevlett.100.207402
25 https://doi.org/10.1103/physrevlett.104.207403
26 https://doi.org/10.1103/physrevlett.84.4184
27 https://doi.org/10.1103/physrevlett.85.3966
28 https://doi.org/10.1103/physrevlett.99.203905
29 https://doi.org/10.1109/aps.2002.1016106
30 https://doi.org/10.1126/science.1058847
31 https://doi.org/10.1126/science.1096796
32 https://doi.org/10.1126/science.1133628
33 https://doi.org/10.1364/josab.23.000434
34 https://doi.org/10.1364/oe.16.009222
35 https://doi.org/10.1364/ol.38.002247
36 schema:datePublished 2015-05
37 schema:datePublishedReg 2015-05-01
38 schema:description Spatial order or periodicity is usually required and constructed with tens of nanometers in the feature size, which makes it difficult to process the near-perfect metamaterial absorbers (PMAs) working in the visible range in large-area and mass-production scale. Although many established technologies and theoretical modeling methods used for order-based metamaterials, aperiodic or disordered structures have been gradually recognized to achieve similar functionalities for which the ordered structures are overwhelmingly used. Here, we demonstrated the vapor-deposited 'amorphous' metamaterials as controlled-reflectance surfaces and tunable PMAs without the use of the lithographically ordered arrays, the prefabricated colloidal metal nanoparticles (MNPs) or the multilayer of nanoparticles. The flexible construction, the control of the monolayer of MNPs and the atomic-layer-deposited (ALD) dielectric spacer layer provide more insight for understanding the controlled-reflectance surfaces. Such processes have a few key advantages of CMOS-compatible simple processing, low cost and large-area plating, allowing the PMAs to be flexibly constructed in mass-production scale.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf Na9450c03a5dc4758916f16212446500e
43 Nef8fb48820364070bb0d1354415c3e89
44 sg:journal.1045337
45 schema:name Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles
46 schema:pagination 4850
47 schema:productId N1d95522a48ef4bd29e9918811522e3ef
48 N9c9fc622a48f4d7ba77735dc0ca9be13
49 Nac5556ffc96b4ff6b91ebd75fe2e4037
50 Nca3addaefb244957835b4216d9d24b3d
51 Ne972ddf666fb4728be8edf8fa69a0c8e
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035608822
53 https://doi.org/10.1038/srep04850
54 schema:sdDatePublished 2019-04-10T23:12
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N2a7f3e2cf97e4ee6be9e1fadb3f69108
57 schema:url http://www.nature.com/srep/2014/140509/srep04850/full/srep04850.html
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0aaad76ad45a45548c10e72c375b9062 rdf:first sg:person.010456636526.45
62 rdf:rest Nfa1eaf100dc6419994aa9ab7d1549c1a
63 N1d95522a48ef4bd29e9918811522e3ef schema:name pubmed_id
64 schema:value 24810434
65 rdf:type schema:PropertyValue
66 N2a7f3e2cf97e4ee6be9e1fadb3f69108 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N6c2fbac69f2c48f0ac9631c199440377 rdf:first sg:person.01334737540.45
69 rdf:rest Ne045730db2a64f76a58c6092c43c0ea0
70 N6d946b585d4647ae8a73e411ddf3de75 rdf:first sg:person.0633700011.28
71 rdf:rest rdf:nil
72 N9c9fc622a48f4d7ba77735dc0ca9be13 schema:name nlm_unique_id
73 schema:value 101563288
74 rdf:type schema:PropertyValue
75 Na480174b292344cda906e5a54d10e887 rdf:first sg:person.01220511140.89
76 rdf:rest N6c2fbac69f2c48f0ac9631c199440377
77 Na9450c03a5dc4758916f16212446500e schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 Nac5556ffc96b4ff6b91ebd75fe2e4037 schema:name dimensions_id
80 schema:value pub.1035608822
81 rdf:type schema:PropertyValue
82 Nca3addaefb244957835b4216d9d24b3d schema:name doi
83 schema:value 10.1038/srep04850
84 rdf:type schema:PropertyValue
85 Ne045730db2a64f76a58c6092c43c0ea0 rdf:first sg:person.01150705212.14
86 rdf:rest N0aaad76ad45a45548c10e72c375b9062
87 Ne972ddf666fb4728be8edf8fa69a0c8e schema:name readcube_id
88 schema:value a9a0918391d21f13b7674141d096dd2ae4d5795a79c146980ae9cda7b62c76ff
89 rdf:type schema:PropertyValue
90 Neae847b8b672457ab75336f1f14223a4 rdf:first sg:person.01347453060.09
91 rdf:rest Na480174b292344cda906e5a54d10e887
92 Nef8fb48820364070bb0d1354415c3e89 schema:volumeNumber 4
93 rdf:type schema:PublicationVolume
94 Nfa1eaf100dc6419994aa9ab7d1549c1a rdf:first sg:person.0740275360.92
95 rdf:rest N6d946b585d4647ae8a73e411ddf3de75
96 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
97 schema:name Engineering
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
100 schema:name Materials Engineering
101 rdf:type schema:DefinedTerm
102 sg:grant.7187828 http://pending.schema.org/fundedItem sg:pub.10.1038/srep04850
103 rdf:type schema:MonetaryGrant
104 sg:journal.1045337 schema:issn 2045-2322
105 schema:name Scientific Reports
106 rdf:type schema:Periodical
107 sg:person.010456636526.45 schema:affiliation https://www.grid.ac/institutes/grid.458467.c
108 schema:familyName Sun
109 schema:givenName Yan
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010456636526.45
111 rdf:type schema:Person
112 sg:person.01150705212.14 schema:affiliation https://www.grid.ac/institutes/grid.458467.c
113 schema:familyName Zhang
114 schema:givenName Kenan
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150705212.14
116 rdf:type schema:Person
117 sg:person.01220511140.89 schema:affiliation https://www.grid.ac/institutes/grid.458467.c
118 schema:familyName Wei
119 schema:givenName Tiaoxing
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220511140.89
121 rdf:type schema:Person
122 sg:person.01334737540.45 schema:affiliation https://www.grid.ac/institutes/grid.458467.c
123 schema:familyName Dong
124 schema:givenName Wenjing
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334737540.45
126 rdf:type schema:Person
127 sg:person.01347453060.09 schema:affiliation https://www.grid.ac/institutes/grid.458467.c
128 schema:familyName Zhang
129 schema:givenName Yun
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347453060.09
131 rdf:type schema:Person
132 sg:person.0633700011.28 schema:affiliation https://www.grid.ac/institutes/grid.458467.c
133 schema:familyName Dai
134 schema:givenName Ning
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633700011.28
136 rdf:type schema:Person
137 sg:person.0740275360.92 schema:affiliation https://www.grid.ac/institutes/grid.458467.c
138 schema:familyName Chen
139 schema:givenName Xin
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740275360.92
141 rdf:type schema:Person
142 sg:pub.10.1007/s00339-012-7344-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000943264
143 https://doi.org/10.1007/s00339-012-7344-1
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/35570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037112953
146 https://doi.org/10.1038/35570
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nature11615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015290365
149 https://doi.org/10.1038/nature11615
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nmat3292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044968517
152 https://doi.org/10.1038/nmat3292
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nphoton.2006.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047194243
155 https://doi.org/10.1038/nphoton.2006.49
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nphoton.2012.343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004740923
158 https://doi.org/10.1038/nphoton.2012.343
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nphoton.2013.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021086028
161 https://doi.org/10.1038/nphoton.2013.29
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/adma.201102646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053033813
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/adma.201200674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003176915
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/lpor.201000046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050273878
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/ac00258a779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054986049
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/cr900056b schema:sameAs https://app.dimensions.ai/details/publication/pub.1028801165
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1021/nl080872f schema:sameAs https://app.dimensions.ai/details/publication/pub.1013722957
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/nl401641v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220135
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/nl9041033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006834111
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1063/1.4808206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058076838
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1088/2040-8978/16/2/025002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059180344
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevb.6.4370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592879
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevb.79.125104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028312623
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevb.83.165107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060635450
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.100.207402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029858791
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.104.207403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006383786
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.84.4184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821220
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.85.3966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822123
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.99.203905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008546640
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/aps.2002.1016106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093204557
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1126/science.1058847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029679857
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.1096796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449554
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1126/science.1133628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019262685
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1364/josab.23.000434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015639103
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1364/oe.16.009222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034291995
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1364/ol.38.002247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065233967
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.458467.c schema:alternateName Shanghai Institute of Technical Physics
214 schema:name National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...